Skip to main content

Synthesis and characterization of yttrium hydroxide and oxide microtubes

Abstract

Hexagonal microtubes with hexagonal phase Y(OH)3 were successfully synthesized by a facile solvothermal method at 160°C for 12 h in the absence of surfactants or templates via a crystal transformation route. Scanning electron microscopy (SEM) results demonstrate that the prepared hexagonal microtubes are with a wall thickness of 50–100 nm, an outer diameter of ∼1 µm, and lengths going up tens of micrometers. Cubic phase Y2O3 microtubes were obtained after thermal treatment of the Y(OH)3 microtubes at 700 °C for 4 h. Eu3+-doped Y2O3 microtubes with strong red emission at 610 nm were also prepared and their photoluminescence (PL) properties were studied. The possible mechanism for the formation of the microtubes was briefly discussed.

This is a preview of subscription content, access via your institution.

References

  1. Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354: 56.

    Article  ADS  CAS  Google Scholar 

  2. Baughman R.H., Zakhidov A.A., and de Heer W.A., Carbon nanotubes—the route toward applications, Science, 2002, 297(5582): 787.

    PubMed  Article  ADS  CAS  Google Scholar 

  3. Tremel W., Inorganic nanotubes, Angew. Chem. Int. Ed., 1999, 38: 2175.

    Article  CAS  Google Scholar 

  4. Ewart T., Perrier P., Graur I. and Méolans J.G., Tangential momemtum accommodation in microtube, Microfluid. Nanofluid., 2007, 3(6): 689.

    Article  CAS  Google Scholar 

  5. Yang X.H., Wang L.L., and Yang S., Facile route to fabricate large-scale silver microtubes, Mater. Lett., 2007, 61: 2904.

    Article  CAS  Google Scholar 

  6. Li Y.D., Wang J.W., Deng Z.X., Wu Y.Y., Sun X.M., and Yu D.P., Bismuth nanotubes: a rational low-temperature synthetic route, J. Am. Chem. Soc., 2001, 123: 9904.

    PubMed  Article  CAS  Google Scholar 

  7. Spahr M.E., Bitterli P., Nesper R., Müller M., Krumeich F., and Nissen H.U., Redox-active nanotubes of vanadium oxide, Angew. Chem. Int. Ed., 1998, 37: 1263.

    Article  CAS  Google Scholar 

  8. Jia C.J., Sun L.D., Yan Z.G., You L.P., Luo F., and Han X.D., Single-crystalline iron oxide nanotubes, Angew. Chem. Int. Ed., 2005, 44: 4328.

    Article  CAS  Google Scholar 

  9. Feldman Y., Wasserman E., Srolovitz D.J., and Tenne R., High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes, Science, 1995, 267(5195): 222.

    PubMed  Article  ADS  CAS  Google Scholar 

  10. Wang X., Sun X. M., Yu D. P., Zou B. S., and Li Y. D., Rare earth compound nanotubes, Adv. Mater., 2003, 15(17): 1442.

    Article  CAS  Google Scholar 

  11. Fang Y.P., Xu A. W., You L.P., Song R.Q., Yu J.C., and Zhang H.X., Hydrothermal synthesis of rare earth (Tb,Y) hydroxide and oxide nanotubes, Adv. Funct. Mater., 2003, 13(12): 955.

    Article  CAS  Google Scholar 

  12. Tang Q., Liu Z. P., Li S., Zhang S.Y., Liu X.M., and Qian Y.T., Synthesis of yttrium hydroxide and oxide nanotubes, J. Cryst. Growth, 2003, 259: 208.

    Article  ADS  CAS  Google Scholar 

  13. Wu X. C., Tao Y.R., Mao C., Liu D.J., and Mao Y.Q., In situ hydrothermal synthesis of YVO4 nanorods and microtubes using (NH4)0.5V2O5 nanowires templates, J. Cryst. Growth, 2006, 290: 207.

    Article  ADS  CAS  Google Scholar 

  14. Wang X. and Li Y. D., Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: synthesis, characterization, and properties, Chem. Eur. J., 2003, 9: 5627.

    Article  CAS  Google Scholar 

  15. Xu A.W., Fang Y.P., You L.P., and Liu H.Q., A simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes, J. Am. Chem. Soc., 2003, 125(6): 1494.

    PubMed  Article  CAS  Google Scholar 

  16. Yada M., Mihara M., Mouri S., Kuroki M., and Kijima T., Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies, Adv. Mater., 2002, 14: 309.

    Article  CAS  Google Scholar 

  17. Liang L.F., Xu H.F., Su Q., Konishi H., Jiang Y.B., and Wu M.M., Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes, Inorg. Chem., 2004, 43(5): 1594.

    PubMed  Article  CAS  Google Scholar 

  18. Wang S.F., Gu F., Li C.Z., and Cao H.M., Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures, J. Cryst. Growth, 2007, 307: 386.

    Article  ADS  CAS  Google Scholar 

  19. Zhuang J.L., Liang L.F., Sung H.H.Y., Yang X.F., Wu M.M., Williams I.D., Feng S.H., and Su Q., Controlled hydrothermal growth and up-conversion emission of NaLnF4 (Ln = Y, Dy-Yb), Inorg. Chem., 2007, 46: 5404.

    PubMed  Article  CAS  Google Scholar 

  20. Yang J., Li C.X., Cheng Z.Y., Zhang X.M., Quan Z.W., Zhang C.M., and Lin J., Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods, J. Phys. Chem. C, 2007, 111: 18148.

    Article  CAS  Google Scholar 

  21. Zhu L., Li Q., Liu X.D., Li J.Y., Zhang Y.F., Meng J., and Cao X.Q., Morphological control and luminescent properties of CeF3 nanocrystals, J. Phys. Chem. C, 2007, 111: 5898.

    Article  CAS  Google Scholar 

  22. Wu X.C., Tao Y.R., Gao F., Dong L., and Hu Z., Preparation and photoluminescence of yttrium hydroxide and yttrium oxide doped with europium nanowires, J. Cryst. Growth, 2005, 277: 643.

    Article  ADS  CAS  Google Scholar 

  23. Bai X., Song H.W., Yu L.X., Yang L.M., Liu Z.X., and Pan G.H., Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method, J. Phys. Chem. B, 2005, 109: 15236.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengliang Zhong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, S., Zhong, S., Wen, Z. et al. Synthesis and characterization of yttrium hydroxide and oxide microtubes. Rare Metals 28, 445–448 (2009). https://doi.org/10.1007/s12598-009-0086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0086-3

Keywords

  • inorganic compounds
  • chemical synthesis
  • luminescence
  • microstructure