Skip to main content
Log in

Energy-based storage assignment in a multi-aisle warehouse

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

An order picker performs repetitive tasks, which may result in fatigue, body pain, and injuries. Therefore, it is essential to approach the storage location assignment from an ergonomic standpoint as well. This study presents an energy consumption based optimization model for storage location assignment in an industrial warehouse that stores metal bars. Through a full factorial experiment, we study how product-location parameters like diameter, weight and location height influence time elements like pull and lift/lower time. Using this information, we predict the energy expenditure of pickers for each product-location combination. Then, we formulate an optimization model to decide the storage location assignment that effectively minimizes the total energy expenditure of pickers. The full factorial experiment shows that all the primary factors are significant. Moreover, computational experiments show that storage assignment based on energy optimization is significantly beneficial as compared to distance-based optimization. The energy expenditure decreases with increase in number of vertical levels. The model can predict the energy expenditure of order picker for different warehouse layout designs and help warehouse manager to decide slot height, number of storage locations, blocks and vertical levels. Finally, we derive insights for future research and practical applications based on our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and code availability

All the data and code used in this manuscript can be shared.

References

  1. Al-Araidah, O., Dalalah, D., Azeez, M.E.A.A., Khasawneh, M.T.: A heuristic for clustering and picking small items considering safe reach of the order picker. Eur. J. Ind. Eng. 11(2), 256–269 (2017)

    Article  Google Scholar 

  2. Battini, D., Berti, N., Finco, S., Guidolin, M., Reggiani, M., Tagliapietra, L.: WEM-Platform: A real-time platform for full-body ergonomic assessment and feedback in manufacturing and logistics systems. Comput. Ind. Eng. 164, 107881 (2022)

    Article  Google Scholar 

  3. Battini, D., Glock, C.H., Grosse, E.H., Persona, A., Sgarbossa, F.: Human energy expenditure in order picking storage assignment: a bi-objective method. Comput. Ind. Eng. 94, 147–157 (2016)

    Article  Google Scholar 

  4. Borg, G.A.V.: A category scale with ratio properties for intermodal and interindividual comparisons. Psychophysical judgment and the process of perception, 25–34 (1982)

  5. Bureau of Labour Statistics.: Nonfatal occupational injuries and illnesses requiring days away from work. Bureau Labor Stat. 16 (2016)

  6. Calzavara, M., Glock, C.H., Grosse, E.H., Persona, A., Sgarbossa, F.: Analysis of economic and ergonomic performance measures of different rack layouts in an order picking warehouse. Comput. Ind. Eng. 111, 527–536 (2017)

    Article  Google Scholar 

  7. Calzavara, M., Glock, C.H., Grosse, E.H., Sgarbossa, F.: An integrated storage assignment method for manual order picking warehouses considering cost, workload and posture. Int. J. Prod. Res. 57(8), 2392–2408 (2019)

    Article  Google Scholar 

  8. Chander, D.S., Cavatorta, M.P.: An observational method for postural ergonomic risk assessment (PERA). Int. J. Ind. Ergon. 57, 32–41 (2017)

    Article  Google Scholar 

  9. De Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)

    Article  Google Scholar 

  10. Dempsey, P.G., Ciriello, V.M., Maikala, R.V., O’Brien, N.V.: Oxygen consumption prediction models for individual and combination materials handling tasks. Ergonomics 51(11), 1776–1789 (2008)

    Article  Google Scholar 

  11. Diefenbach, H., Glock, C.H.: Ergonomic and economic optimization of layout and item assignment of a U-shaped order picking zone. Comput. Ind. Eng. 138, 106094 (2019)

    Article  Google Scholar 

  12. Elbert, R., Müller, J.P.: The impact of item weight on travel times in picker-to-parts order picking: an agent-based simulation approach. In: 2017 Winter Simulation Conference (WSC), pp. 3162–3173. IEEE (2017)

  13. Garg, A.: A metabolic rate prediction model for manual materials handling jobs. University of Michigan (1976)

  14. Garg, A., Chaffin, D.B., Herrin, G.D.: Prediction of metabolic rates for manual materials handling jobs. Am. Ind. Hyg. Assoc. J. 39(8), 661–674 (1978)

    Article  Google Scholar 

  15. Glock, C.H., Grosse, E.H.: Storage policies and order picking strategies in U-shaped order-picking systems with a movable base. Int. J. Prod. Res. 50(16), 4344–4357 (2012)

    Article  Google Scholar 

  16. Glock, C.H., Grosse, E.H., Abedinnia, H., Emde, S.: An integrated model to improve ergonomic and economic performance in order picking by rotating pallets. Eur. J. Oper. Res. 273(2), 516–534 (2019)

    Article  Google Scholar 

  17. Grosse, E.H., Glock, C.H., Neumann, W.P.: Human factors in order picking: a content analysis of the literature. Int. J. Prod. Res. 55(5), 1260–1276 (2017)

    Article  Google Scholar 

  18. Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: A comprehensive review. Eur. J. Oper. Res. 177(1), 1–21 (2007)

    Article  Google Scholar 

  19. Hausman, W.H., Schwarz, L.B., Graves, S.C.: Optimal storage assignment in automatic warehousing systems. Manage. Sci. 22(6), 629–638 (1976)

    Article  Google Scholar 

  20. Hignett, S., McAtamney, L.: Rapid entire body assessment (REBA). Appl. Ergon. 31(2), 201–205 (2000)

    Article  Google Scholar 

  21. Karhu, O., Kansi, P., Kuorinka, I.: Correcting working postures in industry: a practical method for analysis. Appl. Ergon. 8(4), 199–201 (1977)

    Article  Google Scholar 

  22. Kudelska, I., Pawłowski, G.: Influence of assortment allocation management in the warehouse on the human workload. CEJOR 28(2), 779–795 (2020)

    Article  Google Scholar 

  23. Larco, J.A., De Koster, R., Roodbergen, K.J., Dul, J.: Managing warehouse efficiency and worker discomfort through enhanced storage assignment decisions. Int. J. Prod. Res. 55(21), 6407–6422 (2017)

    Article  Google Scholar 

  24. Lorson, F., Fügener, A., Hübner, A.: New team mates in the warehouse: human interactions with automated and robotized systems. IISE Trans. 1–18 (2022)

  25. McAtamney, L., Corlett, E.N.: RULA: a survey method for the investigation of work-related upper limb disorders. Appl. Ergon. 24(2), 91–99 (1993)

    Article  Google Scholar 

  26. Mocan, A., Draghici, A.: Reducing ergonomic strain in warehouse logistics operations by using wearable computers. Procedia Soc. Behav. Sci. 238, 1–8 (2018)

    Article  Google Scholar 

  27. Montgomery, D.C.: Design and analysis of experiments. Wiley (2017)

    Google Scholar 

  28. Napolitano, M.: 2012 warehouse/DC operations survey: mixed signals. Logistics management (Highlands Ranch, Colo.: 2002) 51(11) (2012)

  29. Occhipinti, E.: A concise index for the assessment of exposure to repetitive movements of the upper limbs. Occup. Health Ind. Med. 6(39), 277 (1998)

    Google Scholar 

  30. Otto, A., Boysen, N., Scholl, A., Walter, R.: Ergonomic workplace design in the fast pick area. OR Spectr. 39, 945–975 (2017)

    Article  Google Scholar 

  31. Pan, J.C.H., Wu, M.H.: A study of storage assignment problem for an order picking line in a pick-and-pass warehousing system. Comput. Ind. Eng. 57(1), 261–268 (2009)

    Article  Google Scholar 

  32. Petersen, C.G., Siu, C., Heiser, D.R.: Improving order picking performance utilizing slotting and golden zone storage. Int. J. Op. Prod. Manag. (2005)

  33. Price, A.D.F.: Calculating relaxation allowances for construction operatives—Part 1: metabolic cost. Appl. Ergon. 21(4), 311–317 (1990)

    Article  Google Scholar 

  34. Proia, S., Cavone, G., Camposeo, A., Ceglie, F., Carli, R., Dotoli, M.: Safe and Ergonomic Human-Drone Interaction in Warehouses. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6681–6686. IEEE (2022)

  35. Rybnikár, F., Kačerová, I., Hořejší, P., Šimon, M.: Ergonomics evaluation using motion capture technology—literature review. Appl. Sci. 13(1), 162 (2022)

    Article  Google Scholar 

  36. Sakthi Nagaraj, T., Jeyapaul, R., Vimal, K.E.K., Mathiyazhagan, K.: Integration of human factors and ergonomics into lean implementation: ergonomic-value stream map approach in the textile industry. Prod. Plan. Control 30(15), 1265–1282 (2019)

    Article  Google Scholar 

  37. Schneider, E., Irastorza, X. Work-related musculoskeletal disorders in the EU-Facts and Figures. European Agency for Safety and Health at Work (2010)

  38. Snook, S.H., Ciriello, V.M.: The design of manual handling tasks: revised tables of maximum acceptable weights and forces. Ergonomics 34(9), 1197–1213 (1991)

    Article  Google Scholar 

  39. Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities planning. Wiley (2010)

    Google Scholar 

  40. Wang, Z., Sheu, J.B., Teo, C.P., Xue, G.: Robot scheduling for mobile-rack warehouses: human–robot coordinated order picking systems. Prod. Oper. Manag. 31(1), 98–116 (2022)

    Article  Google Scholar 

  41. Waters, T.R., Putz-Anderson, V., Garg, A., Fine, L.J.: Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 36(7), 749–776 (1993)

    Article  Google Scholar 

  42. Xiao, J., Zheng, L.: A correlated storage location assignment problem in a single-block-multi-aisles warehouse considering BOM information. Int. J. Prod. Res. 48(5), 1321–1338 (2010)

    Article  Google Scholar 

  43. Zhang, J., Zhang, N., Tian, L., Zhou, Z., Wang, P.: Robots’ picking efficiency and pickers’ energy expenditure: the item storage assignment policy in robotic mobile fulfillment system. Comput. Ind. Eng. 176, 108918 (2023)

    Article  Google Scholar 

  44. Zhao, Y.S., Jaafar, M.H., Mohamed, A.S.A., Azraai, N.Z., Amil, N.: Ergonomics risk assessment for manual material handling of warehouse activities involving high shelf and low shelf binning processes: application of marker-based motion capture. Sustainability 14(10), 5767 (2022)

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DN contributed to data collection, experimentation, coding, and analysis. RV and SJ contributed to the conception of the study, model development, interpretation of results, review, and editing. DN wrote the first draft of the manuscript and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rakesh Venkitasubramony.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The authors state that the submitted manuscript is original and is not offered or published elsewhere in any form or language.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

h

k

n

p

opt. EE

EE

(dist. Opt.)

fmax

fmin

rel. imp(%)

0.3

2

5

29

30,968.69

33,143.55

290

281

7.02

10

15

26,388.33

28,306.27

300

281

7.27

15

10

25,450.09

27,369.46

300

281

7.54

20

8

25,188.58

27,308.45

320

281

8.42

3

5

19

21,863.77

25,878.63

285

281

18.36

10

10

18,993.79

23,089.07

300

281

21.56

15

7

18,437.62

22,877.21

315

281

24.08

20

5

18,622.93

22,885.58

300

281

22.89

4

5

15

18,109.22

22,204.26

300

281

22.61

10

8

16,182.12

20,196.92

320

281

24.81

15

5

16,182.57

20,244.41

300

281

25.10

20

4

16,130.68

20,834.31

320

281

29.16

5

5

12

16,393.58

19,468.99

300

281

18.76

10

6

15,166.28

18,916.80

300

281

24.73

15

4

15,152.97

18,765.86

300

281

23.84

20

3

15,408.30

19,065.37

300

281

23.73

6

5

10

15,429.78

19,219.76

300

281

24.56

10

5

14,551.14

18,147.61

300

281

24.72

15

4

14,289.41

18,379.35

360

281

28.62

20

3

14,497.83

18,151.50

360

281

25.20

h: location height in meters; k: no. of vertical levels; n: no. of blocks in each partition; p: no. of partitions; opt. EE: optimised energy expenditure in Kcal; EE(dist. Opt.): distance optimized energy expenditure in Kcal; fmax: total no. of locations; fmin: minimum no. of locations; rel. imp(%): relative improvement of optimized energy expenditure over distance optimized energy expenditure

h

k

n

p

opt. EE

EE (dist. Opt.)

fmax

fmin

rel. imp(%)

0.4

2

5

24

26,685.04

29,398.29

240

231

10.17

10

12

22,706.56

25,488.78

240

231

12.25

15

8

21,967.02

25,183.25

240

231

14.64

20

6

21,915.04

24,538.05

240

231

11.97

3

5

16

19,584.72

23,207.56

240

231

18.50

10

8

17,294.05

20,822.81

240

231

20.40

15

6

16,714.14

20,615.24

270

231

23.34

20

4

17,220.64

20,767.39

240

231

20.60

4

5

12

17,043.02

20,335.63

240

231

19.32

10

6

15,595.02

19,073.39

240

231

22.30

15

4

15,576.17

18,972.80

240

231

21.81

20

3

15,879.87

19,308.98

240

231

21.59

5

5

10

15,774.17

18,694.85

250

231

18.52

10

5

14,769.80

17,460.25

250

231

18.22

15

4

14,578.69

17,792.55

300

231

22.04

20

3

14,810.60

17,687.42

300

231

19.42

h

k

n

p

opt. EE

EE (dist. Opt.)

fmax

fmin

rel. imp(%)

0.5

2

5

21

22,517.69

26,227.35

210

205

16.47

10

11

18,879.56

22,780.16

220

205

20.66

15

7

18,447.06

22,287.98

210

205

20.82

20

6

18,006.22

22,258.91

240

205

23.62

3

5

14

17,876.31

21,935.58

210

205

22.71

10

7

15,935.25

19,414.25

210

205

21.83

15

5

15,611.22

19,023.59

225

205

21.86

20

4

15,651.77

19,596.84

240

205

25.21

4

5

11

15,970.44

19,000.62

220

205

18.97

10

6

14,640.25

17,935.09

240

205

22.51

15

4

14,624.79

17,962.39

240

205

22.82

20

4

15,489.92

19,206.82

320

244

24.00

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, D., Venkitasubramony, R. & Jakhar, S.K. Energy-based storage assignment in a multi-aisle warehouse. OPSEARCH 60, 1951–1975 (2023). https://doi.org/10.1007/s12597-023-00672-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-023-00672-x

Keywords

Navigation