Skip to main content

Advertisement

Log in

Discovering themes and trends in electricity supply chain area research

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Electricity Supply Chain Management has become one of the foremost vital areas of research, as energy firms are extensively concerned about their supply chains in order to maximize profitability, reduce expenses, and gain market share. Thus, numerous research evaluations and implementation methodologies are observed in this area. However, only a few exceptional attempts have been undertaken in the past to summarize sporadic elements of knowledge obtained from these scientific endeavors. As a result, aiming to present a particular viewpoint of this topic, the paper utilizes three analyses—bibliometric analysis through Bibliomatrix R and VOSviewer, thematic analysis through Biblioshiny and text mining technique—topic modelling to give a summary of ESCM scientific investigation accomplished from 1975 to 2021. This study analyzes trends in publication, authorship patterns, and keyword usage. The study utilizes a probabilistic procreative model through structural topic modeling to decipher and extricate esoteric themes from ESCM-related research papers. According to this research, the most popular topics in the ESCM area are carbon emission, energy saving, risk and uncertainties, price regulations, smart grid, IoT, and game theory analysis. Other significant components include life cycle assessment, ICT system, static and dynamic transportation network equilibrium, and network modelling for evaluation and selection of suppliers. The article also identifies knowledge gaps that may guide future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Figure12
Figure13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tanimoto, K.: Encyclopedia of corporate social responsibility. Encycl. Corp. Soc. Responsib. (2013). https://doi.org/10.1007/978-3-642-28036-8

    Article  Google Scholar 

  2. Abu el Ata, N., Schmandt, R.: The Tyranny of Uncertainty. Springer, Berlin. (2016). https://doi.org/10.1007/978-3-662-49104-1

    Article  Google Scholar 

  3. Meena, S.R., Meena, S.D., Pratap, S., Patidar, R., Daultani, Y.: Strategic analysis of the Indian agri-food supply chain. Opsearch 56(3), 965–982 (2019). https://doi.org/10.1007/s12597-019-00380-5

    Article  Google Scholar 

  4. Li, S., Ragu-Nathan, B., Ragu-Nathan, T.S., Subba Rao, S.: The impact of supply chain management practices on competitive advantage and organizational performance. Omega 34(2), 107–124 (2006). https://doi.org/10.1016/j.omega.2004.08.002

    Article  Google Scholar 

  5. Burgess, K., Singh, P.J., Koroglu, R.: Supply chain management: a structured literature review and implications for future research. Int. J. Oper. Prod. Manag. 26(7), 703–729 (2006). https://doi.org/10.1108/01443570610672202

    Article  Google Scholar 

  6. Chopra, S., Meindl, P.: Supply Chain Management. Strategy, Planning & Operation. In: Das Summa Summarum des Management, pp. 265–275. Gabler, Wiesbaden. https://doi.org/10.1007/978-3-8349-9320-5_22

  7. Croom, S., Romano, P., Giannakis, M.: Supply chain management: an analytical framework for critical literature review. Eur. J. Purch. Supply Manag. 6(1), 67–83 (2000). https://doi.org/10.1016/S0969-7012(99)00030-1

    Article  Google Scholar 

  8. Giunipero, L.C., Hooker, R.E., Joseph-Matthews, S., Yoon, T.E., Brudvig, S.: A decade of scm literature: past, present and future Implications. J. Supply Chain Manag. 44(4), 66–86 (2008). https://doi.org/10.1111/j.1745-493X.2008.00073.x

    Article  Google Scholar 

  9. Soni, G., Kodali, R.: An empirical investigation of supply chain management excellence framework in Indian manufacturing industry. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229(2), 343–364 (2015). https://doi.org/10.1177/0954405414527953

    Article  Google Scholar 

  10. Pramod, V.R., Banwet, D.K., Sarma, P.R.S.: Understanding the barriers of service supply chain management: an exploratory case study from Indian telecom industry. Opsearch 53(2), 358–374 (2016). https://doi.org/10.1007/s12597-015-0234-5

    Article  Google Scholar 

  11. Mentzer, J., Richey, R., Daugherty, P., Genchev, S., Autry, C.: Defining supplychain management. J. Bus. Logist. 22(2), 1–25 (2001)

    Article  Google Scholar 

  12. Helgeson, B., Peter, J.: The role of electricity in decarbonizing European road transport—Development and assessment of an integrated multi-sectoral model. Appl. Energy 262, 114365 (2020). https://doi.org/10.1016/j.apenergy.2019.114365

    Article  Google Scholar 

  13. Hall, L.M.H., Buckley, A.R.: A review of energy systems models in the UK: prevalent usage and categorisation. Appl. Energy 169, 607–628 (2016). https://doi.org/10.1016/j.apenergy.2016.02.044

    Article  Google Scholar 

  14. Wang, X.H., Cong, R.G.: Electric power supply chain management addressing climate change. Procedia Eng. 29(1), 749–753 (2012). https://doi.org/10.1016/j.proeng.2012.01.035

    Article  Google Scholar 

  15. Bas, E.: The integrated framework for analysis of electricity supply chain using an integrated SWOT-fuzzy TOPSIS methodology combined with AHP: the case of Turkey. Int. J. Electr. Power Energy Syst. 44(1), 897–907 (2013). https://doi.org/10.1016/j.ijepes.2012.08.045

    Article  Google Scholar 

  16. Ma, T., Sun, C.: Research on energy saving and emission reduction of Liaoning’s power energy based on the electric supply chain. In: Proceedings of 22nd Internatioanl Conference on Ind. Eng. Eng. Manag. 2015, pp. 817–823 (2016). https://doi.org/10.2991/978-94-6239-180-2.

  17. Sprick, S., Grieger, M., Werner, A.: Renewable energy supply chain management in the context of Virtual Power Systems. In: IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4785–4790 (2013). https://doi.org/10.1109/IECON.2013.6699909.

  18. Vrat, P., Gupta, R., Bhatnagar, A., Pathak, D.K., Fulzele, V.: Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions. Opsearch 55(3–4), 601–627 (2018). https://doi.org/10.1007/s12597-018-0338-9

    Article  Google Scholar 

  19. Merigó, J.M., Gil-Lafuente, A.M., Yager, R.R.: An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 27, 420–433 (2015). https://doi.org/10.1016/j.asoc.2014.10.035

    Article  Google Scholar 

  20. Bouyssou, D., Marchant, T.: Ranking scientists and departments in a consistent manner. J. Am. Soc. Inf. Sci. Technol. 62(9), 1761–1769 (2011). https://doi.org/10.1002/asi.21544

    Article  Google Scholar 

  21. Daim, T.U., Rueda, G., Martin, H., Gerdsri, P.: Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technol. Forecast. Soc. Change 73(8), 981–1012 (2006). https://doi.org/10.1016/j.techfore.2006.04.004

    Article  Google Scholar 

  22. Broadus, R.N.: Toward a definition of ‘bibliometrics.’ Scientometrics 12(5–6), 373–379 (1987). https://doi.org/10.1007/BF02016680

    Article  Google Scholar 

  23. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M.: How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 133, 285–296 (2021). https://doi.org/10.1016/j.jbusres.2021.04.070

    Article  Google Scholar 

  24. Mukhopadhyay, S.: Opinion mining in management research: the state of the art and the way forward. Opsearch 55(2), 221–250 (2018). https://doi.org/10.1007/s12597-017-0328-3

    Article  Google Scholar 

  25. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2), 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  26. Albalawi, R., Yeap, T.H., Benyoucef, M.: Using topic modeling methods for short-text data: a comparative analysis. Front. Artif. Intell. 3(July), 1–14 (2020). https://doi.org/10.3389/frai.2020.00042

    Article  Google Scholar 

  27. Roberts, M.E., Stewart, B.M., Airoldi, E.M.: A model of text for experimentation in the social sciences. J. Am. Stat. Assoc. 111(515), 988–1003 (2016). https://doi.org/10.1080/01621459.2016.1141684

    Article  Google Scholar 

  28. Nikolenko, S.I., Koltcov, S., Koltsova, O.: Topic modelling for qualitative studies. J. Inf. Sci. 43(1), 88–102 (2017). https://doi.org/10.1177/0165551515617393

    Article  Google Scholar 

  29. He, L., Han, D., Zhou, X., Qu, Z.: The voice of drug consumers: online textual review analysis using structural topic model. Int. J. Environ. Res. Public Health 17(10), 3648 (2020). https://doi.org/10.3390/ijerph17103648

    Article  Google Scholar 

  30. Küsters, A., Garrido, E.: Mining PIGS. A structural topic model analysis of Southern Europe based on the German newspaper Die Zeit (1946–2009). J. Contemp. Eur. Stud. 28(4), 477–493 (2020). https://doi.org/10.1080/14782804.2020.1784112

    Article  Google Scholar 

  31. Blei, D., Carin, L., Dunson, D.: Probabilistic topic models. IEEE Signal Process. Mag. 27(6), 55–65 (2010). https://doi.org/10.1109/MSP.2010.938079

    Article  Google Scholar 

  32. Hornik, K., Grün, B.: Topic models: AN R package for fitting topic models. J. Stat. Software. 40(13), 1–30 (2011)

    Google Scholar 

  33. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012). https://doi.org/10.1145/2133806.2133826

    Article  Google Scholar 

  34. Wittstruck, D., Teuteberg, F.: Understanding the success factors of sustainable supply chain management: empirical evidence from the electrics and electronics industry. Corp. Soc. Responsib. Environ. Manag. 19(3), 141–158 (2012). https://doi.org/10.1002/csr.261

    Article  Google Scholar 

  35. Gupta, H.V., Clark, M.P., Vrugt, J.A., Abramowitz, G., Ye, M.: Towards a comprehensive assessment of model structural adequacy. Water Resour. Res. 48(8), 1–16 (2012). https://doi.org/10.1029/2011WR011044

    Article  Google Scholar 

  36. Roberts, M.E., et al.: Structural topic models for open-ended survey responses. Am. J. Pol. Sci. 58(4), 1064–1082 (2014). https://doi.org/10.1111/ajps.12103

    Article  Google Scholar 

  37. Wallach, H.M., Murray, I., Salakhutdinov, R., Mimno, D.: Evaluation methods for topic models. In: Proceedings of the 26th International conference on Machine Learning (ICML) 2009, no. 4, pp. 1105–1112 (2009)

  38. Taddy, M.: On estimation and selection for topic models. In: Artificial Intelligence and Statistics, pp. 1184–1193. PMLR, 2012. Available from https://proceedings.mlr.press/v22/taddy12.html

  39. Roberts, M.E., Stewart, B.M., Tingley, D.: Stm: an R package for structural topic models. J. Stat. Softw. (2019). https://doi.org/10.18637/jss.v091.i02

    Article  Google Scholar 

  40. Roberts, M.E., Stewart, B.M., Tingley, D.: Navigating the local modes of big data: the case of topic models. Comput. Soc. Sci. (2016). https://doi.org/10.1017/cbo9781316257340.004

    Article  Google Scholar 

  41. Woolley, T., Nagurney, A., Stranlund, J.: Spatially Differentiated Trade of Permits for Multipollutant Electric Power Supply Chains, pp. 277–296 (2009). https://doi.org/10.1007/978-3-540-88965-6_12

  42. Wu, K., Nagurney, A., Liu, Z., Stranlund, J.K.: Modeling generator power plant portfolios and pollution taxes in electric power supply chain networks: a transportation network equilibrium transformation. Transp. Res. D Transp. Environ. 11(3), 171–190 (2006). https://doi.org/10.1016/j.trd.2006.01.002

    Article  Google Scholar 

  43. Tietenberg, T.: Board of Regents of the University of Wisconsin system an exercise emissions trading : in reforming pollution policy for the future, 1985,” vol. 62, no. 2, pp. 214–216 (2015)

  44. Yang, H., Chung, C.Y., Wong, K.P.: Optimal fuel, power and load-based emissions trades for electric power supply chain equilibrium. IEEE Trans. Power Syst. 27(3), 1147–1157 (2012). https://doi.org/10.1109/TPWRS.2011.2180545

    Article  Google Scholar 

  45. Giri, B.C., Ray, I.: Optimal sustainability investment and pricing decisions in a two-echelon supply chain with emissions-sensitive demand under cap-and-trade policy. Opsearch (2022). https://doi.org/10.1007/s12597-021-00569-7

    Article  Google Scholar 

  46. Liu, Y., Zhao, R., Wu, K.J., Huang, T., Chiu, A.S.F., Cai, C.: A hybrid of multi-objective optimization and system dynamics simulation for straw-to-electricity supply chain management under the belt and road initiatives. Sustain. (2018). https://doi.org/10.3390/su10030868

    Article  Google Scholar 

  47. Nishimura, A., Yasui, T., Kitagawa, S., Hirota, M., Hu, E.: An energy supply chain from large scale photovoltaic power generation from asian cities to end users in Japan. Smart Grid Renew. Energy 08(05), 145–162 (2017). https://doi.org/10.4236/sgre.2017.85010

    Article  Google Scholar 

  48. Gonela, V.: Stochastic optimization of hybrid electricity supply chain considering carbon emission schemes. Sustain. Prod. Consum. 14(xxxx), 136–151 (2018). https://doi.org/10.1016/j.spc.2018.02.004

    Article  Google Scholar 

  49. Saghaei, M., Ghaderi, H., Soleimani, H.: Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand. Energy 197, 117165 (2020). https://doi.org/10.1016/j.energy.2020.117165

    Article  Google Scholar 

  50. Yi, H., Hajiesmaili, M.H., Zhang, Y., Chen, M., Lin, X.: Impact of the uncertainty of distributed renewable generation on deregulated electricity supply chain. IEEE Trans. Smart Grid 9(6), 6183–6193 (2018). https://doi.org/10.1109/TSG.2017.2705289

    Article  Google Scholar 

  51. Osmani, A., Zhang, J.: Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties. Energy 70, 514–528 (2014). https://doi.org/10.1016/j.energy.2014.04.043

    Article  Google Scholar 

  52. Prostean, G., Badea, A., Vasar, C., Octavian, P.: Risk variables in wind power supply chain. Procedia - Soc. Behav. Sci. 124, 124–132 (2014). https://doi.org/10.1016/j.sbspro.2014.02.468

    Article  Google Scholar 

  53. Gupta, N., Luttrell, G., Noble, A.: Coal micro-pricing: optimizing the coal fuel supply chain for indian thermal power plants. Int. J. Coal Prep. Util. 38(8), 402–421 (2018). https://doi.org/10.1080/19392699.2016.1277211

    Article  Google Scholar 

  54. J. Zhang, J. Zhou, L. Mo, Q. Li, and H. Qin, “Electricity price direct discount model of power supply chain based on pareto optimization,” Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. CSO 2009, vol. 2, pp. 411–415, 2009, doi: https://doi.org/10.1109/CSO.2009.85.

  55. Wahyuda, B.S., Rusdiansyah, A.: Cost analysis of an electricity supply chain using modification of price based dynamic economic dispatch in wheeling transaction scheme. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899X/337/1/012009

    Article  Google Scholar 

  56. Peng, H., Zhou, M., Wang, F.: Multiperiod coordination models of coal-electricity supply chain with double price regulations. Discret. Dyn. Nat. Soc. (2015). https://doi.org/10.1155/2015/789597

    Article  Google Scholar 

  57. Lahti, J.P., Helo, P., Shamsuzzoha, A., Phusavat, K.: “IoT in electricity supply chain: Review and evaluation. Conf. ICT Knowl. Eng, Int (2018). https://doi.org/10.1109/ICTKE.2017.8259615

    Book  Google Scholar 

  58. Salvi, V.Z.: Electricity supply chain management—A literature review. Arch. Bus. Res. (ABR) 8(1), 182–191 (2020). https://doi.org/10.14738/abr.81.7691

    Article  Google Scholar 

  59. Lu, G., Wei, B., Ma, L.: Smart grid and electricity market. Xitong Zidonghua/Autom. Electric Power Syst. 34(9), 1–7 (2010)

    Google Scholar 

  60. Chehri, A., Fofana, I., Yang, X.: Security risk modeling in smart grid critical infrastructures in the era of big data and artificial intelligence. Sustain. (2021). https://doi.org/10.3390/su13063196

    Article  Google Scholar 

  61. Dhana Lakshmi, K.V., Ram, S.S.T., Subbrahmanyam, J.B.V., Kumar, G.R.: Significance of wavelet and IOT techniques in micro-grid based power system protection. In: Proceedings of 2020 IEEE Internatioanl Symposium on Sustain. Energy, Signal Processing and Cyber Security (iSSSC) 2020. https://doi.org/10.1109/iSSSC50941.2020.9358861.

  62. Zhang, X., Manogaran, G., Muthu, B.A.: IoT enabled integrated system for green energy into smart cities. Sustain. Energy Technol. Assessments 46(February), 101208 (2021). https://doi.org/10.1016/j.seta.2021.101208

    Article  Google Scholar 

  63. Nasiri, F., Zaccour, G.: An exploratory game-theoretic analysis of biomass electricity generation supply chain. Energy Policy 37(11), 4514–4522 (2009). https://doi.org/10.1016/j.enpol.2009.06.008

    Article  Google Scholar 

  64. Zhang, X., Luo, K., Tan, Q.: A game theory analysis of China’s agri-biomass-based power generation supply chain: a co-opetition strategy. Energy Procedia 105, 168–173 (2017). https://doi.org/10.1016/j.egypro.2017.03.297

    Article  Google Scholar 

  65. Amin, W., Huang, Q., Afzal, M., Khan, A.A., Umer, K., Ahmed, S.A.: A converging non-cooperative & cooperative game theory approach for stabilizing peer-to-peer electricity trading. Electr. Power Syst. Res. 183(2017), 106278 (2020). https://doi.org/10.1016/j.epsr.2020.106278

    Article  Google Scholar 

  66. Wen, W., Zhang, Q.: A design of straw acquisition mode for China’s straw power plant based on supply chain coordination. Renew. Energy 76, 369–374 (2015). https://doi.org/10.1016/j.renene.2014.11.062

    Article  Google Scholar 

  67. Corcelli, F., et al.: Sustainable urban electricity supply chain – Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecol. Indic. 94, 37–51 (2018). https://doi.org/10.1016/j.ecolind.2016.03.028

    Article  Google Scholar 

  68. Wang, C., et al.: Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. J. Environ. Manage. 246, 758–767 (2019). https://doi.org/10.1016/j.jenvman.2019.06.047

    Article  Google Scholar 

  69. Yue, D., You, F.: Functional-Unit-Based Life Cycle Optimization of Sustainable Biomass-to-Electricity Supply Chain with Economic and Environmental Tradeoffs, vol. 34. Elsevier, Amsterdam (2014). https://doi.org/10.1016/B978-0-444-63433-7.50093-6.

  70. Al Monsur, A., Paddo, A.R., Mohammedy, F.M.: Life cycle assessment of climate change and GHG emission from natural gas thermal power plant. In: 2020 IEEE Reg. 10 Symposium TENSYMP 2020, no. June, pp. 1628–1631 (2020). https://doi.org/10.1109/TENSYMP50017.2020.9230465

  71. Bangprasit, P., Chavalparit, O., Usapein, P.: Life cycle assessment of Napier Pakchong 1 grass as a feedstock for anaerobic digestion to produce electricity: A case study in Thailand. In: Proceedings of the 2017 International Conference on. Green Energy and Applications (ICGEA) 2017, pp. 123–129. https://doi.org/10.1109/ICGEA.2017.7925468

  72. Xu, L., Pang, M., Zhang, L., Poganietz, W.R., Marathe, S.D.: Life cycle assessment of onshore wind power systems in China. Resour. Conserv. Recycl. 132(June), 361–368 (2018). https://doi.org/10.1016/j.resconrec.2017.06.014

    Article  Google Scholar 

  73. Burchart-Korol, D., Pustejovska, P., Blaut, A., Jursova, S., Korol, J.: Comparative life cycle assessment of current and future electricity generation systems in the Czech Republic and Poland. Int. J. Life Cycle Assess. 23(11), 2165–2177 (2018). https://doi.org/10.1007/s11367-018-1450-z

    Article  Google Scholar 

  74. Lahti, J.P., Helo, P., Shamsuzzoha, A., Phusavat, K.: Big data in evolving energy supply chains. Int. Conf. ICT Knowl. Eng. (2016). https://doi.org/10.1109/ICTKE.2016.7804094

    Article  Google Scholar 

  75. Lahti, J.P., Helo, P., Shamsuzzoha, A.: Data communications in electricity supply chain: ICT-systems interconnections in Nordic power market area. Int. Conf. ICT Knowl. Eng. (2013). https://doi.org/10.1109/ICTKE.2013.6756271

    Article  Google Scholar 

  76. Lahti, J.P., Helo, P., Shamsuzzoha, A.: Information flows and ICT-system interconnections in electricity supply chain wind power modelled. Int. Conf. ICT Knowl. Eng. (2012). https://doi.org/10.1109/ICTKE.2012.6408550

    Article  Google Scholar 

  77. Lahti, J.P., Helo, P.T., Shamsuzzoha, A.: Advanced wind power management: Model of information flows and ICT-system interconnections in electricity supply chain. Int. J. Bus. Inf. Syst. 16(2), 209–232 (2014). https://doi.org/10.1504/IJBIS.2014.062839

    Article  Google Scholar 

  78. Koopmans, T.C.: Studies in the Economic of Transportation (1956)

  79. Nagurney, A.: Static and Dynamic Transportation Network Equilibrium Reformulations of Electric Power Supply Chain Networks with Known Demands, no. October, pp. 1–46 (2005)

  80. Liu, Z., Nagurney, A.: An integrated electric power supply chain and fuel market network framework: theoretical modeling with empirical analysis for New England. Nav. Res. Logist. 56(7), 600–624 (2009). https://doi.org/10.1002/nav.20363

    Article  Google Scholar 

  81. Lai, S., Yang, H., Zhang, X., Chen, L.: Nash equilibrium analysis of electric power supply chain with fuel supplier. In: Asia-Pacific Power Energy Engeneering Conference. APPEEC, pp. 1–4 (2009). https://doi.org/10.1109/APPEEC.2009.4918511

  82. Wang, C.N., Yang, C.Y., Cheng, H.C.: Fuzzy multi-criteria decision-making model for supplier evaluation and selection in awind power plant project. Mathematics 7(5), 1–15 (2019). https://doi.org/10.3390/math7050417

    Article  Google Scholar 

  83. Wang, C., Du, X., Rao, C.: Supplier selection mechanism in electric coal procurement under sustainability. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-14071-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahay, S., Kaushik, H.K. & Singh, S. Discovering themes and trends in electricity supply chain area research. OPSEARCH 60, 1525–1560 (2023). https://doi.org/10.1007/s12597-023-00648-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-023-00648-x

Keywords

Navigation