Skip to main content

Advertisement

Log in

Selection of conventional preservation technologies using analytical hierarchy process

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Vegetable crop quality loss commences right along the route of harvesting, transportation, storage, and delivery to consumers. Despite the huge postharvest loss of horticultural crops recorded, no reports have been disclosed on alternative preservation technologies in Ethiopia. Herein, an analytical hierarchy process was employed to select the best food preservation technology. Pairwise comparison of the criteria with respect to the goal was performed based on the suggestion’s food technology experts. Considering the economic feasibility and personal skill, fermentation (29.0%) took the greatest weight followed by the hot water treatment technique (27.3%). Likewise, those techniques for tomato preservation in different ways like solar dryer, cold house storage, and modified atmosphere packaging account for 20.7%, 15.6%, and 7.3% respectively. This finding would serve as input data for small to large holding farmers, retailers, investors as well as stakeholders in the food processing sector and support the sustainable development intent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

All the needed data are provided in the manuscript.

References

  1. Ramos, B., Miller, F.A., Brandão, T.R.S., Teixeira, P., Silva, C.L.M.: Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 20, 1–15 (2013)

    Article  Google Scholar 

  2. Johnson, L.K., Bloom, J.D., Dunning, R.D., Gunter, C.C., Boyette, M.D., Creamer, N.G.: Farmer harvest decisions and vegetable loss in primary production. Agric. Syst. 176, 102672 (2019)

    Article  Google Scholar 

  3. Sawicka, B.: Post-harvest losses of agricultural produce. Sustain. Dev. 1, 1–16 (2019)

    Google Scholar 

  4. Lin, F., Wu, P., Shi, J., Tao, J., Zhuo, X.: Impacts of expiration date on optimal ordering policy for deteriorating items under two-level trade credit: Quantity loss and quality loss. J. Oper. Res. Soc. 73(6), 1393–1410 (2022)

    Article  Google Scholar 

  5. Arah, I.K., Ahorbo, G.K., Anku, E.K., Kumah, E.K., Amaglo, H.: Postharvest handling practices and treatment methods for tomato handlers in developing countries: A mini review. Adv. Agric. 2016, 1–8 (2016)

    Google Scholar 

  6. Manaliliby, N.M.: Appropriate food packaging solutions for developing countries. Food and Agriculture Organization of the United Nations (FAO), Rome (2011)

    Google Scholar 

  7. Mancuso, M.: Wasaby (Wasabia japonica): A natural antimicrobial agent for food preservation. J. Fish. Livest. Prod. 5, e110 (2017). https://doi.org/10.4172/2332-2608.1000e111

    Article  Google Scholar 

  8. Wu, Y., Wu, Y., Han, P., Xu, J., Liang, X.: Effect of alginate coatings incorporated with chitinase from ʻBaozhuʼ pear on the preservation of cherry tomato during refrigerated storage. Food Sci. Nutr. (2022). https://doi.org/10.1002/fsn3.2908

    Article  Google Scholar 

  9. Abera, G., Ibrahim, A.M., Forsido, S.F., Kuyu, C.G.: Assessment on post-harvest losses of tomato (Lycopersicon esculentem Mill.) in selected districts of East Shewa Zone of Ethiopia using a commodity system analysis methodology. Heliyon 6(4), e03749 (2020)

    Article  Google Scholar 

  10. Rapolu, C.N., Kandpal, D.H.: Joint pricing, advertisement, preservation technology investment and inventory policies for non-instantaneous deteriorating items under trade credit. Opsearch 57(2), 274–300 (2020)

    Article  Google Scholar 

  11. Teferra, T.F.: The cost of postharvest losses in Ethiopia: economic and food security implications. Heliyon 8(3), e09077 (2022)

    Article  Google Scholar 

  12. Bighaghire, R., Okidi, L., Muggaga, C., Ongeng, D.: Traditional vegetable preservation technologies practiced in Acholi subregion of Uganda improves mineral bioavailability but impacts negatively on the contribution of vegetables to household needs for micronutrients. Food Sci. Nutr. 9(2), 589–604 (2021)

    Article  Google Scholar 

  13. Acedo, A.L., Jr., Rahman, M.A., Buntong, B., Gautam, D.M.: Establishing and managing smallholder vegetable packhouses to link farms and markets. A training manual: AVRDC/USAID Postharvest Program-Asia, Tainan City (2016)

    Google Scholar 

  14. Kasso, M., Bekele, A.: Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. J. Saudi Soc. Agric. Sci. 17(1), 88–96 (2018)

    Google Scholar 

  15. van Gogh, J.B., Aramyan, L.H.: Reducing postharves food losses in developing economies by using a network of excellence as an intervention tool. Food and Agriculture Organization of the United Nations (FAOUN) Addis Ababa, Rome (2014)

    Google Scholar 

  16. Prokopov, T., Tanchev, S.: Methods of food preservation. In: Food safety, pp. 3–25. Springer, Boston (2007)

  17. Elik, A., Yanik, D.K., Istanbullu, Y., Guzelsoy, N.A., Yavuz, A., Gogus, F.: Strategies to reduce post-harvest losses for fruits and vegetables. Strategies 5(3), 29–39 (2019)

    Google Scholar 

  18. Yeshiwas, Y., Tadele, E.: An investigation into major causes for postharvest losses of horticultural crops and their handling practice in debre markos, north-western Ethiopia. Adv. Agric. (2021). https://doi.org/10.1155/2021/1985303

    Article  Google Scholar 

  19. Kuyu, C.G., Tola, Y.B., Abdi, G.G.: Study on post-harvest quantitative and qualitative losses of potato tubers from two different road access districts of Jimma zone, South West Ethiopia. Heliyon 5(8), e02272 (2019)

    Article  Google Scholar 

  20. Yigzaw, D., Habtemariam, A., Teshome, D., Amare, H.: Assessment of fruit postharvest handling practices and losses in Bahir Dar, Ethiopia. Afr. J. Agric. Res. 11(52), 5209–5214 (2016)

    Article  Google Scholar 

  21. Emana, B., Afari-Sefa, V., Nenguwo, N., Ayana, A., Kebede, D., Mohammed, H.: Characterization of pre-and postharvest losses of tomato supply chain in Ethiopia. Agric. Food Secur. 6(1), 1–11 (2017)

    Article  Google Scholar 

  22. Rahiel, H.A., Zenebe, A.K., Leake, G.W., Gebremedhin, B.W.: Assessment of production potential and post-harvest losses of fruits and vegetables in northern region of Ethiopia. Agric. Food Secur. 7(1), 1–13 (2018)

    Article  Google Scholar 

  23. Abera, G., Ibrahim, A.M., Forsido, S.F., Kuyu, C.G.: Assessment on post-harvest losses of tomato (Lycopersicon esculentem Mill) in selected districts of East Shewa Zone of Ethiopia using a commodity system analysis methodology. Heliyon 6(4), e03749 (2020)

    Article  Google Scholar 

  24. Sancho-Madriz, M.F.: Preservation of food. California state polytechnic university, p. 4766. Elsevier Science Ltd, Pomona (2003)

    Google Scholar 

  25. Javier, R., Gustavo, V.B.: Nonthermal preservation of foods using combined processing techniques. Crit. Rev. Food Sci. Nutr. 43(3), 265–285 (2003)

    Article  Google Scholar 

  26. Gautam, P., Khanna, A., Jaggi, C.K.: Preservation technology investment for an inventory system with variable deterioration rate under expiration dates and price sensitive demand. Yugosl. J. Oper. Res. 30(3), 289–305 (2020)

    Article  Google Scholar 

  27. Gautam, P., Kamna, K.M., Jaggi, C.K.: Sustainable production policies under the effect of volume agility, preservation technology and price-reliant demand. Yugosl. J. Oper. Res. 30(3), 307–324 (2020)

    Article  Google Scholar 

  28. Aljamel, S.A., Badi, I.A., Shetwan, A.G.: Using analytical hierarchy process to select the best power generation technology in Libya. Int. J. Eng. Inf. Technol. 3(2), 159–163 (2017)

    Google Scholar 

  29. Noryani, M., Sapuan, S.M., Mastura, M.T.: Multi-criteria decision-making tools for material selection of natural fibre composites: A review. J. Mech. Eng. Sci. 12(1), 3330 (2018)

    Article  Google Scholar 

  30. Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., Valipour, A.: Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Econ. Res. 28(1), 516–571 (2015)

    Google Scholar 

  31. Guru, S., Mahalik, D.K.: A comparative study on performance measurement of Indian public sector banks using AHP-TOPSIS and AHP-grey relational analysis. Opsearch 56(4), 1213–1239 (2019)

    Article  Google Scholar 

  32. Timisela, N.R., Masyhuri, M., Darwanto, D.H.: Development strategy of sago local food agroindustry using analytical Hierarchy Process method. AGRARIS J. Agribus. Rural Dev. Res. 7(1), 36–52 (2021)

    Article  Google Scholar 

  33. Chen, Y.C., Lee, C.S., Tsui, P.L., Chiang, M.C.: The application of the analytic hierarchy process approach to the inheritance of local delicious food culture and development of sustainable innovations. Agronomy 12(3), 660 (2022)

    Article  Google Scholar 

  34. Carpitella, S., Mzougui, I., Izquierdo, J.: Multi-criteria risk classification to enhance complex supply networks performance. Opsearch 59(3), 769–785 (2022)

    Article  Google Scholar 

  35. Pažek, K., Rozman, Č: Application of analytical hierarchy process in agriculture. Poljoprivreda 11(2), 67–73 (2005)

    Google Scholar 

  36. Dirpan, A., Slamet, A. S.: Selecting postharvest technology method for citrus fruit using analytic hierarchy process (AHP). KnE Life Sci. pp. 77–82 (2016)

  37. Lenin, V.M., Baviera-Puig, A., García-Álvarez-Coque, J.M.: Multi-criteria methodology: AHP and fuzzy logic in the selection of post-harvest technology for smallholder cocoa production. Int. Food Agribus. Manag. Rev. 17(1030-2016–82980), 107–124 (2014)

    Google Scholar 

  38. Montenegro, L.V., Puig, A.B., Álvarez-Coque, J.M.G.: AHP choice in cocoa post-harvest technology for small-scale farmers. Span. J. Agric. Res. 3, 542–552 (2014)

    Article  Google Scholar 

  39. Ramanathan, R., Karpuzcu, H.: Comparing perceived and expected service using an AHP model: an application to measure service quality of a company engaged in pharmaceutical distribution. Opsearch 48(2), 136–152 (2011)

    Article  Google Scholar 

  40. Mitra, K.: Validating AHP, fuzzy alpha cut and fuzzy preference programming method using clustering technique. Opsearch 47(1), 5–15 (2010)

    Article  Google Scholar 

  41. Dani, A.R., De, S.K.: Fuzzy analytical hierarchical process for selecting a bank. Opsearch 40(4), 241–251 (2003)

    Article  Google Scholar 

  42. Nooramin, A.S., Sayareh, J., Moghadam, M.K., Alizmini, H.R.: TOPSIS and AHP techniques for selecting the most efficient marine container yard gantry crane. Opsearch 49(2), 116–132 (2012)

    Article  Google Scholar 

  43. Nyaoga, R., Magutu, P., Wang, M.: Application of Grey-TOPSIS approach to evaluate value chain performance of tea processing chains. Decis. Sci. Lett. 5(3), 431–446 (2016)

    Article  Google Scholar 

  44. Kitinoja, L., Saran, S., Roy, S.K., Kader, A.A.: Postharvest technology for developing countries: challenges and opportunities in research, outreach and advocacy. J. Sci. Food Agric. 91(4), 597–603 (2011)

    Article  Google Scholar 

  45. Bantayehu, M., Alemayehu, M.: Efficacy of postharvest technologies on ripening behavior and quality of banana varieties grown in Ethiopia. Int. J. Fruit Sci. 20(1), 59–75 (2020)

    Article  Google Scholar 

  46. Goepel, K.D.: Implementation of an online software tool for the analytic hierarchy process (AHP-OS). Int. J. Anal. Hierarchy Process 10(3), 469–487 (2018)

    Google Scholar 

  47. Asrat, F., Ayalew, A., Degu, A.: Postharvest loss assessment of tomato (Solanum lycopersicum L.) in Fogera, Ethiopia. Turk. J. Agric. Food Sci. Technol. 7(8), 1146–1155 (2019)

    Google Scholar 

  48. Itoh, K.: Combined effects of hot water treatment (HWT) and modified atmosphere packaging (MAP) on quality of tomatoes. Packag. Technol. Sci. 16(4), 171–178 (2003)

    Article  Google Scholar 

  49. Paltrinieri, G., Staff, F.A.O.: Handling of fresh fruits, vegetables and root crops: A training manual for grenada. Food and Agriculture Organization of the United Nations, Rome (2014)

    Google Scholar 

  50. Amit, S.K., Uddin, M., Rahman, R., Islam, S.M., Khan, M.S.: A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 6(1), 1–22 (2017)

    Article  Google Scholar 

  51. Manas, R.S., Marimuthu, A., Ramesh, C.R., Rizwana, P.R.: Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnol. Res. Int. 2014, 9 (2014)

    Google Scholar 

  52. Thorat, P.P., Sadawarte, S.K., Sawate, A.R., Machewad, G.M.: Studies on effect of fermentation on physicochemical properties of vegetables and preparation of sauce. Int. J. Curr. Microbiol. App. Sci. 6(8), 3537–3545 (2017)

    Article  Google Scholar 

  53. Varsha, B.K.: Advantages and disadvantages of traditional fermentation of dairy products. Int. J. Recent Trends Sci. Technol. (2018). https://doi.org/10.1111/1541-4337.12897

    Article  Google Scholar 

  54. Yadav C.O., Ramana P.V.: Experimental investigation of the solar dryer using phase-change material. In: Deb D., Dixit A., Chandra L. (eds.) Renewable Energy and Climate Change, Smart Innovation, Systems and Technologies, vol. 161 (2020)

  55. Boughali, S., Benmoussa, H., Bouchekima, B., Mennouche, D., Bouguettaia, H., et al.: Crop drying by indirect active hybrid solar-electrical dryer in the eastern Algerian septentrional Sahara. Solar Energy 83, 2223–2232 (2009)

    Article  Google Scholar 

  56. Tiwari, A.: A review on solar drying of agricultural produce. J. Food Process. Technol. 7(9), 1–12 (2016)

    Article  Google Scholar 

  57. Kendall, P., Allen, L.: Drying vegetables: food and nutrition series-preparation. Colo. State Univ. Cooperative Ext. Serv. Publ. 10, 1998 (2018)

    Google Scholar 

  58. Flammini, A., Bracco, S., Sims, R., Cooke, J., Elia, A.: Costs and benefits of clean energy technologies in the milk, vegetable and rice value chains. Food and Agriculture Organization of the United Nations (FAOUN), Rome (2018)

    Google Scholar 

  59. John, W.: Low-cost cold storage room for market growers, p. 40546. Cooperative Extension Service. University of Kentucky College of Agriculture, Lexington (2009)

    Google Scholar 

  60. Sanoj, K., Ashok, K., Satish, K.: Development of a cold storage facility for agricultural produce using air conditioner. Int. J. Sci. Environ. Technol. 8(3), 565–573 (2019)

    Google Scholar 

  61. Tigist, N.T., Wosene, G.A.: Effect of hot water treatment on reduction of chilling injury and keeping quality in tomato (Solanum lycopersicum L.) fruits. J. Stored Prod. Postharvest Res. 7(7), 61–68 (2016)

    Google Scholar 

  62. Lu, J., Charles, M.T., Vigneault, C., Goyette, B., Raghavan, G.V.: Effect of heat treatment uniformity on tomato ripening and chilling injury. Postharvest Biol. Technol. 56(2), 155–162 (2010)

    Article  Google Scholar 

  63. Seelam, N.S., Akula, H., Katike, U., Obulam, V.S.R.: Production, characterization and optimization of fermented tomato and carrot juices by using Lysinibacillus sphaericus isolate. J. Appl. Biol. Biotechnol. 5(4), 0–7 (2017)

    Google Scholar 

Download references

Acknowledgements

We are delighted to thank post-harvest experts in the Ministry of Agriculture of Ethiopia. Afterward, we would like to extend our appreciation to post-harvest management experts working for the Food and Agricultural Organization of the United Nations based at the Ministry of Agriculture and Natural Resources of Ethiopia and coordinators for providing us with detailed post-harvest loss status and handling practices. Ethiopian society of post-harvest members from different corners of Ethiopia and overseas participants are greatly appreciated for providing expert advice.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HG performed conceptualization and supervision of the study. BA, BA, SA, and AA carried out data collection, data analysis, interpretation, and write-up of the paper. H and B contributed to reviewing and editing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hailemariam Gebru.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Consent for publication

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebru, H., Abdissa, B., Addis, B. et al. Selection of conventional preservation technologies using analytical hierarchy process. OPSEARCH 60, 217–233 (2023). https://doi.org/10.1007/s12597-023-00622-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-023-00622-7

Keywords

Navigation