Skip to main content
Log in

A multi-attributive ideal-real comparative analysis-based approach for piston material selection

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Piston is an essential component of an engine cylinder. High competition among the manufacturers urges them to explore the use of the best piston material in the engine cylinders. Materials ranging from aluminium to steel and iron are mostly utilized as the piston material. Forces from hot and expanding gases imposed inside the cylinder and many other critical factors make the selection of an appropriate piston material more demanding, since no single material satisfies all the required properties for a given application. In this paper, the performance of eight candidate piston materials is evaluated based on eight selection criteria. Entropy method is applied to estimate the criteria weights and multi-attributive ideal-real comparative analysis technique is adopted to identify the most suitable piston material. AISI 4140 steel emerges out as the top ranked piston material followed by AISI 8660 steel. A sensitivity analysis study is also performed to verify the consistency and robustness of the derived ranking results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashby, M.F., Johnson, K.: Materials and Design: The Art and Science of Material Selection in Product Design. Butterworth-Heinemann, London (2002)

    Google Scholar 

  2. Van Basshuysen, R., Schafer, F.: Internal Combustion Engine Handbook-Basics, Components, Systems and Perspectives. SAE International, USA (2004)

    Book  Google Scholar 

  3. Purohit, P., Ramachandran, M.: Selection of flywheel material using multicriteria decision making fuzzy Topsis. Indian J. Sci. Technol. 8(33), 1–5 (2015)

    Article  Google Scholar 

  4. Anojkumar, L., Ilangkumaran, M., Vignesh, M.: A decision making methodology for material selection in sugar industry using hybrid MCDM techniques. Int. J. Mater. Prod. Technol. 51(2), 102–126 (2015)

    Article  Google Scholar 

  5. Liao, T.W.: Two interval type 2 fuzzy TOPSIS material selection methods. Mater. Des. 88, 1088–1099 (2015)

    Article  Google Scholar 

  6. Kumar, R., Singal, S.K.: Penstock material selection in small hydropower plants using MADM methods. Renew. Sustain. Energy Rev. 52, 240–255 (2015)

    Article  Google Scholar 

  7. Kumar, R., Ray, A.: Optimal selection of material an eclectic decision. J. Inst. Eng. (India): Series C 96(1), 29–33 (2015)

    Google Scholar 

  8. Maity, S.R., Chakraborty, S.: Tool steel material selection using PROMETHEE II method. Int. J. Adv. Manuf. Technol. 78(9–12), 1537–1547 (2015)

    Article  Google Scholar 

  9. AL-Oqla, F.M., Sapuan, S.M., Ishak, M.R., Nuraini, A.A.: A decision-making model for selecting the most appropriate natural fiber-polypropylene-based composites for automotive applications. J. Compos. Mater. 50(4), 543–556 (2015)

    Article  Google Scholar 

  10. Khandekar, A.V., Chakraborty, S.: Decision-making for materials selection using fuzzy axiomatic design principles. Int. J. Ind. Syst. Eng. 20(1), 117–138 (2015)

    Google Scholar 

  11. Bhattacharyya, O., Chakraborty, S.: Q-analysis in materials selection. Decis. Sci. Letts. 4(1), 51–62 (2015)

    Article  Google Scholar 

  12. Xue, Y.X., You, J.X., Lai, X.D., Liu, H.C.: An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information. Appl. Soft Comput. 38, 703–713 (2016)

    Article  Google Scholar 

  13. Das, D., Bhattacharya, S., Sarkar, B.: Decision-based design-driven material selection: a normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design. Mater. Des. 92, 787–793 (2016)

    Article  Google Scholar 

  14. Yazdani, M., Jahan, A., Zavadskas, E.: Analysis in material selection: influence of normalization tools on COPRAS-G. Econom. Comput. Econom. Cybernet. Stud. Res. 51(1), 59–74 (2017)

    Google Scholar 

  15. Hafezalkotob, A., Hafezalkotob, A.: Risk-based material selection process supported on information theory: a case study on industrial gas turbine. Appl. Soft Comput. 52, 1116–1129 (2017)

    Article  Google Scholar 

  16. Patel, S.S., Prajapati, J.M.: Multi-criteria decision making approach: Selection of blanking die material. Int. J. Eng. 30(5), 800–806 (2017)

    Google Scholar 

  17. Zindani, D., Maity, S.R., Bhowmik, S., Chakraborty, S.: A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis. Int. J. Mater. Res. 108(5), 345–354 (2017)

    Article  Google Scholar 

  18. Moradian, M., Modanloo, V., Aghaiee, S.: Comparative analysis of multi criteria decision making techniques for material selection of brake booster valve body. J. Traffic Transp. Eng. 6(5), 526–534 (2018)

    Google Scholar 

  19. Yadav, S., Pathak, V.K., Gangwar, S.: A novel hybrid TOPSIS-PSI approach for material selection in marine applications. Sadhana 44(3), 58 (2019)

    Article  Google Scholar 

  20. Dev, S., Aherwar, A., Patnaik, A.: Material selection for automotive piston component using entropy-VIKOR method. SILICON (2019). https://doi.org/10.1007/s12633-019-00110-y

    Article  Google Scholar 

  21. Chen, G., He, Y.H., Shen, P.Z.: Research actualities on materials and processes of engine piston parts and cylinder liner. Mater. Sci. Eng. Powder Metall. 14(4), 205–212 (2009)

    Google Scholar 

  22. Yinshui, L., Wu, D., He, X., Zhuangyun, L.: Materials screening of matching pairs in a water hydraulic piston pump. Ind. Lubr. Tribol. 61(3), 173–178 (2009)

    Article  Google Scholar 

  23. Zhang, X.J., Chen, K.Z., Feng, X.A.: Optimization of material properties needed for material design of components made of multi-heterogeneous materials. Mater. Des. 25(5), 369–378 (2004)

    Article  Google Scholar 

  24. Buyukkaya, E., Cerit, M.: Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surf. Coat. Technol. 202(2), 398–402 (2007)

    Article  Google Scholar 

  25. Chatterjee, K., Pamučar, D., Zavadskas, E.K.: Evaluating the performance of suppliers based on using the R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. J. Clean. Prod. 184, 101–129 (2018)

    Article  Google Scholar 

  26. Pamučar, D., Mihajlović, M., Obradović, R., Atanasković, P.: Novel approach to group multi-criteria decision making based on interval rough numbers: hybrid DEMATEL-ANP-MAIRCA model. Expert Syst. Appl. 88, 58–80 (2017)

    Article  Google Scholar 

  27. Gigović, L., Pamučar, D., Bajić, Z., Milicević, M.: The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depot. Sustainability 8(4), 1–30 (2016)

    Article  Google Scholar 

  28. Chakraborty, S., Chatterjee, P.: Selection of materials using multi-criteria decision-making methods with minimum data. Decision Sci. Letts. 2(3), 135–148 (2013)

    Article  Google Scholar 

  29. Pamučar, D., Vasin, L. and Lukovac, L.: “Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model”. In: Proc. of the XVI International Scientific-Expert Conference on Railways, Serbia, pp. 89–92 (2014)

  30. MatWeb, Online Materials Information Resource. Automation Creations, Inc., Blackburg, Virginia

  31. Chang, D.Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95(3), 649–655 (1996)

    Article  Google Scholar 

  32. Ghaleb, A.M., Kaid, H., Alsamhan, A., Mian, S.H., Hidri, L.: Assessment and comparison of various MCDM approaches in the selection of manufacturing process. Adv. Mater. Sci. Eng. 2020, 4039253 (2020)

    Article  Google Scholar 

  33. Mukhametzyanov, I., Pamučar, D.: A sensitivity analysis in MCDM problems: A statistical approach. Decis. Making Appl. Manag. Eng. 1(2), 51–80 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saikat Chatterjee or Shankar Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, S., Chakraborty, S. A multi-attributive ideal-real comparative analysis-based approach for piston material selection. OPSEARCH 59, 207–228 (2022). https://doi.org/10.1007/s12597-021-00536-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-021-00536-2

Keywords

Navigation