Skip to main content
Log in

Solving the general fully neutrosophic multi-level multiobjective linear programming problems

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This paper addresses the general fully neutrosophic multi-level multiobjective programming problems i.e. ML-MOLPPs in which not only coefficients of each objective at each level but also all coefficients and parameters in the constraints are fully neutrosophic numbers in the form of trapezoidal neutrosophic numbers (NNs). From the point of view of complexity of the problem, it is proposed to apply ranking function of NNs to convert problem into equivalent ML-MOLPPs with crisp values of neutrosophic coefficients and parameters. Then suitable membership function for each objective and decision variable are formulated using lowest and highest value of each objective and decision variables of converted ML-MOLPP. Formulation of membership functions for decision variables (using corresponding values to maximum and minimum of objectives) will avoid decision deadlock in hierarchical structure. Accordingly, simple fuzzy goal programming strategy is applied to build FGP solution models. With the help of linear programming techniques on these solution models, compromise optimal solution of original fully neutrosophic ML-MOLPP is obtained. The proposed approach is a unique and simple method to provide compromise optimal solution to decision makers of general fully neutrosophic ML-MOLPP. The proposed approach is illustrated with numerical example to show its uniqueness and simplicity as solution technique. A case study is also discussed to demonstrate its applicability on real problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lachhwani, K., Dwivedi, A.: Bi-level and multi-level programming problems: taxonomy of literature review and research issues. Arch. Comput. Methods Eng. 25, 847–877 (2018). https://doi.org/10.1007/s11831-017-9216-5

    Article  Google Scholar 

  2. Bhati, D., Singh, P., Arya, R.: A taxonomy and review of the multi-objective fractional programming (MOFP) problems. Int. J. Appl. Comput. Math. 3, 2695–2717 (2016). https://doi.org/10.1007/s40819-016-0261-9

    Article  Google Scholar 

  3. Gzara, F.: A cutting plane approach for bilevel hazardous material transport network design. Oper. Res. Lett. 41, 40–46 (2013). https://doi.org/10.1016/j.orl.2012.10.007

    Article  Google Scholar 

  4. Fontaine, P., Minner, S.: Benders decomposition for discrete-continuous linear bilevel problems with application to traffic network design. Transp. Res. Part B Methodol. 70, 163–172 (2014). https://doi.org/10.1016/j.trb.2014.09.007

    Article  Google Scholar 

  5. Kis, T., Kovács, A.: Exact solution approaches for bilevel lot-sizing. Eur. J. Oper. Res. 226, 237–245 (2013). https://doi.org/10.1016/j.ejor.2012.11.023

    Article  Google Scholar 

  6. Wang, D., Du, G., Jiao, R.J., Wu, R., Yu, J., Yang, D.: A Stackelberg game theoretic model for optimizing product family architecting with supply chain consideration. Int. J. Prod. Econ. 172, 1–18 (2016). https://doi.org/10.1016/j.ijpe.2015.11.001

    Article  Google Scholar 

  7. Camacho-Vallejo, J.-F., Cordero-Franco, Á.E., González-Ramírez, R.G.: Solving the bilevel facility location problem under preferences by a Stackelberg-evolutionary algorithm. Math. Probl. Eng. 2014, 1–14 (2014). https://doi.org/10.1155/2014/430243

    Article  Google Scholar 

  8. Kalashnikov, V., Matis, T.I., Camacho Vallejo, J.F., Kavun, S.V.: Bilevel programming, equilibrium, and combinatorial problems with applications to engineering. Math. Probl. Eng. 2015, 1–3 (2015). https://doi.org/10.1155/2015/490758

    Article  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/s0019-9958(65)90241-x

    Article  Google Scholar 

  10. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986). https://doi.org/10.1016/s0165-0114(86)80034-3

    Article  Google Scholar 

  11. Smarandache, F.: A unifying field in logics: neutrosophic logic. Neutrosophy, Neutrosophic set, neutrosophic probability and statistics. (1998)

  12. Smarandache, F.: Introduction of neutrosophic statistics. Sitech and Education Publisher, Craiova (2013)

    Google Scholar 

  13. Smarandache, F.: (t, i, f)-Neutrosophic structures & I-neutrosophic structures (revisited). Neutrosophic Sets Syst. 8, 3–9 (2015)

    Google Scholar 

  14. Ye, J.: Multiple-attribute group decision-making method under a neutrosophic number environment. J. Intell. Syst. (2016). https://doi.org/10.1515/jisys-2014-0149

    Article  Google Scholar 

  15. Deli, I., Şubaş, Y.: A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int. J. Mach. Learn. Cybern. 8, 1309–1322 (2016). https://doi.org/10.1007/s13042-016-0505-3

    Article  Google Scholar 

  16. Deli, I., Şubaş, Y.: Some weighted geometric operators with SVTrN-numbers and their application to multi-criteria decision making problems. J. Intell. Fuzzy Syst. 32, 291–301 (2017). https://doi.org/10.3233/jifs-151677

    Article  Google Scholar 

  17. Tanaka, H., Okuda, T., Asai, K.: Fuzzy mathematical programming. Trans. Soc. Instrum. Control Eng. 9, 607–613 (1973). https://doi.org/10.9746/sicetr1965.9.607

    Article  Google Scholar 

  18. Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978). https://doi.org/10.1016/0165-0114(78)90031-3

    Article  Google Scholar 

  19. Bharati, S.K., Singh, S.R.: A note on solving a fully intuitionistic fuzzy linear programming problem based on sign distance. Int. J. Comput. Appl. 119, 30–35 (2015). https://doi.org/10.5120/21379-4347

    Article  Google Scholar 

  20. Sidhu, S.K., Kumar, A.: A note on “Solving intuitionistic fuzzy linear programming problems by ranking function.” J. Intell. Fuzzy Syst. 30, 2787–2790 (2016). https://doi.org/10.3233/ifs-152033

    Article  Google Scholar 

  21. Liu, Q., Yang, Y.: Interactive programming approach for solving multi-level multi-objective linear programming problem. J. Intell. Fuzzy Syst. 35, 55–61 (2018). https://doi.org/10.3233/jifs-169566

    Article  Google Scholar 

  22. Pramanik, S., Banerjee, D., Giri, B.: Multi-level multi-objective linear plus linear fractional programming problem based on FGP approach. Int. J. Innov. Sci. Eng. Technol. 2, 171–177 (2015)

    Google Scholar 

  23. Baky, I.A.: Solving multi-level multi-objective linear programming problems through fuzzy goal programming approach. Appl. Math. Model. 34, 2377–2387 (2010). https://doi.org/10.1016/j.apm.2009.11.004

    Article  Google Scholar 

  24. Lachhwani, K.: On solving multi-level multi objective linear programming problems through fuzzy goal programming approach. Opsearch 51, 624–637 (2014). https://doi.org/10.1007/s12597-013-0157-y

    Article  Google Scholar 

  25. Lachhwani, K.: Modified FGP approach for multi-level multi objective linear fractional programming problems. Appl. Math. Comput. 266, 1038–1049 (2015). https://doi.org/10.1016/j.amc.2015.06.027

    Article  Google Scholar 

  26. Osman, M.S., Emam, O.E., El Sayed, M.A.: Solving multi-level multi-objective fractional programming problems with fuzzy demands via FGP approach. Int. J. Appl. Comput. Math. (2017). https://doi.org/10.1007/s40819-017-0467-5

    Article  Google Scholar 

  27. Pramanik, S., Roy, R., Roy, T.: Teacher selection strategy based on bidirectional projection measure in neutrosophic number environment. In: Neutrosophic operational research, pp. 29–53. Pons Publishing House/Pons asb, Bruxelles (2017)

    Google Scholar 

  28. Ye, J.: Neutrosophic number linear programming method and its application under neutrosophic number environments. Soft. Comput. 22, 4639–4646 (2017). https://doi.org/10.1007/s00500-017-2646-z

    Article  Google Scholar 

  29. Ye, J., Cui, W., Lu, Z.: Neutrosophic number nonlinear programming problems and their general solution methods under neutrosophic number environments. Axioms 7, 13 (2018). https://doi.org/10.3390/axioms7010013

    Article  Google Scholar 

  30. Pramanik, S., Banerjee, D.: Neutrosophic number goal programming for multi-objective linear programming problem in neutrosophic number environment. MOJ Curr. Res. Rev. 1, 135–141 (2018). https://doi.org/10.15406/mojcrr.2018.01.00021

    Article  Google Scholar 

  31. Pramanik, S., Dey, P.: Bi-level linear programming problem with neutrosophic numbers. Neutrosophic Sets Syst. 21, 110–121 (2018)

    Google Scholar 

  32. Maiti, I., Mandal, T., Pramanik, S.: Neutrosophic goal programming strategy for multi-level multi-objective linear programming problem. J. Ambient Intell. Humaniz. Comput. 11, 3175–3186 (2020). https://doi.org/10.1007/s12652-019-01482-0

    Article  Google Scholar 

  33. Abdel-Basset, M., Gunasekaran, M., Mohamed, M., Smarandache, F.: A novel method for solving the fully neutrosophic linear programming problems. Neural Comput. Appl. 31, 1595–1605 (2019). https://doi.org/10.1007/s00521-018-3404-6

    Article  Google Scholar 

  34. Mohamed, M., Abdel-Basset, M., Zaied, A., Smarandache, F.: Neutrosophic integer programming problem. Neutrosophic Sets Syst. 15, 3–7 (2017). https://doi.org/10.5281/zenodo.570944

    Article  Google Scholar 

  35. Ganesan, K., Veeramani, P.: Fuzzy linear programs with trapezoidal fuzzy numbers. Ann. Oper. Res. 143, 305–315 (2006). https://doi.org/10.1007/s10479-006-7390-1

    Article  Google Scholar 

  36. Ebrahimnejad, A., Tavana, M.: A novel method for solving linear programming problems with symmetric trapezoidal fuzzy numbers. Appl. Math. Model. 38, 4388–4395 (2014). https://doi.org/10.1016/j.apm.2014.02.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash Lachhwani.

Ethics declarations

Conflict of interest

Author declares that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachhwani, K. Solving the general fully neutrosophic multi-level multiobjective linear programming problems. OPSEARCH 58, 1192–1216 (2021). https://doi.org/10.1007/s12597-021-00522-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-021-00522-8

Keywords

Navigation