Skip to main content
Log in

Opinion mining in management research: the state of the art and the way forward

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In the past decade, the explosive growth of social media has led to the emergence of a wide variety of information sources that can significantly impact individual level decision making processes. This has resulted in an increasing availability of unstructured textual data and automated evaluation of opinions, attitudes, and emotions has been accepted as an indispensable analytical tool in diverse domains. Consequently, there is a strong need to understand the underlying technical aspects of this emerging new field of analysis. In the current paper we address this need by reviewing the state of the art in sentiment analysis, summarize some of the important recent applications of sentiment analysis and offer future directions for further research. This paper differs from earlier reviews in a number of ways: first, it offers preliminary technical exposition of various techniques following a simple classification scheme so as to help potential future users to develop overall understanding of this rapidly developing field; second, it discusses in greater detail some of the more recently proposed techniques to solve a set of problems in specific management domains; third, it also presents some examples to elucidate how combining sentiment analysis techniques with conventional econometric approaches can help us solve business specific problems. The main goal of this paper is to generate more interest about this interesting new domain among management researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from Medhat et al. [17])

Fig. 3

(adapted from wikipedia)

Fig. 4
Fig. 5
Fig. 6

(Reproduced with permission from Blei et al. [22])

Fig. 7

(Reproduced with permission from Blei et al. [22])

Fig. 8

(Reproduced with permission from Lin and He [24])

Fig. 9

(Reproduced with permission from Watson and Tellegen [79])

Similar content being viewed by others

References

  1. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, CC., Zhai, CX. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)

  2. Berger, J., Milkman, K.L.: What makes online content viral? J. Mark. Res. 49(2), 192–205 (2012)

    Article  Google Scholar 

  3. Schweidel, D.A., Moe, W.W.: Listening in on social media: a joint model of sentiment and venue format choice. J. Mark. Res. 51(4), 387–402 (2014)

    Article  Google Scholar 

  4. Toubia, O., Stephen, A.T.: Intrinsic vs. image-related utility in social media: why do people contribute content to twitter? Mark. Sci. 32(3), 368–392 (2013)

    Article  Google Scholar 

  5. Chmiel, A., Sienkiewicz, J., Thelwall, M., Paltoglou, G., Buckley, K., Kappas, A., Hołyst, J.A.: Collective emotions online and their influence on community life. PLoS ONE 6(7), e22207 (2011)

    Article  Google Scholar 

  6. Muniz, A.M., O’guinn, T.C.: Brand community. J. Consum. Res. 27(4), 412–432 (2001)

    Article  Google Scholar 

  7. Sun, S., Luo, C., Chen, J.: A review of natural language processing techniques for opinion mining systems. Inf. Fusion 36(Supplement C), 10–25 (2017)

    Article  Google Scholar 

  8. Piryani, R., Madhavi, D., Singh, V.K.: Analytical mapping of opinion mining and sentiment analysis research during 2000–2015. Inf. Process. Manag. 53(1), 122–150 (2017)

    Article  Google Scholar 

  9. Liu, B.: Sentiment analysis and subjectivity. Handb. Nat. Lang. Process. 2, 627–666 (2010)

    Google Scholar 

  10. Kumar, S., Morstatter, F., Liu, H.: Twitter Data Analytics. Springer, Berlin (2014)

    Book  Google Scholar 

  11. Swanson, B., Charniak, E.: Native language detection with tree substitution grammars. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2 2012, pp. 193–197. Association for Computational Linguistics

  12. Peter, W.: The Porter stemming algorithm: then and now. Program 40(3), 219–223 (2006)

    Article  Google Scholar 

  13. Porter, M.: Lovins revisited. In: Tait, J. (ed.) Charting a New Course: Natural Language Processing and Information Retrieval, pp. 39–68. Springer, University of Sunderland, Sunderland, UK (2005)

  14. Titov, I., McDonald, R.T.: A joint model of text and aspect ratings for sentiment summarization. In: ACL 2008, pp. 308–316

  15. Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis on review text data: a rating regression approach. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2010, pp. 783–792. ACM

  16. Hagenau, M., Liebmann, M., Neumann, D.: Automated news reading: Stock price prediction based on financial news using context-capturing features. Decis. Support Syst. 55(3), 685–697 (2013)

    Article  Google Scholar 

  17. Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)

    Article  Google Scholar 

  18. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    Google Scholar 

  19. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Google Scholar 

  20. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  Google Scholar 

  21. Mosteller, F., Wallace, DL.: Inference and disputed authorship: The Federalist. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., (1964)

  22. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    Google Scholar 

  23. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence 2004, pp. 487–494. AUAI Press

  24. Lin, C., He, Y.: Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management 2009, pp. 375–384. ACM

  25. Jo, Y., Oh, A.H.: Aspect and sentiment unification model for online review analysis. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining 2011, pp. 815–824. ACM

  26. Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C.: Topic sentiment mixture: modeling facets and opinions in weblogs. In: Proceedings of the 16th International Conference on World Wide Web 2007, pp. 171–180. ACM

  27. Kang, M., Ahn, J., Lee, K.: Opinion mining using ensemble text hidden Markov models for text classification. Expert Syst. Appl. 94(Supplement C), 218–227 (2018)

    Article  Google Scholar 

  28. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet: an on-line lexical database. Int. J. Lexicogr. 3(4), 235–244 (1990)

    Article  Google Scholar 

  29. Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The general inquirer: a computer approach to content analysis. Am. J. Sociol. 73(5), 634–635 (1968)

    Article  Google Scholar 

  30. Cambria, E., Speer, R., Havasi, C., Hussain, A.: SenticNet: a publicly available semantic resource for opinion mining. In: Commonsense knowledge: papers from the AAAI fall symposium, pp. 14–18. Menlo Park, CA, USA: AAAI Press. 2010 AAAI Fall Symposium, Arlington, VA, USA (2010)

  31. Gilbert, C.H.E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International AAAI Conference on Weblogs and Social Media (2014)

  32. Mohammad, S.M., Turney, P.D.: Emotions evoked by common words and phrases: using mechanical Turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text 2010, pp. 26–34. Association for Computational Linguistics

  33. Bradley, M.M., Lang, P.J.: Affective norms for English words (ANEW): instruction manual and affective ratings. In: Technical Report C-1, the Center for Research in Psychophysiology, University of Florida (1999)

  34. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–2204 (2007)

  35. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In proceeding of the International Conference on Machine Learning (ICML), pp. 282–289 (2001)

  36. Lund, K., Burgess, C.: Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Methods Instrum. Comput. 28(2), 203–208 (1996)

    Article  Google Scholar 

  37. Chevalier, J.A., Mayzlin, D.: The effect of word of mouth on sales: online book reviews. J. Mark. Res. 43(3), 345–354 (2006)

    Article  Google Scholar 

  38. Moe, W.W., Schweidel, D.A.: Online product opinions: incidence, evaluation, and evolution. Mark. Sci. 31(3), 372–386 (2012)

    Article  Google Scholar 

  39. Chen, Y., Xie, J.: Third-party product review and firm marketing strategy. Mark. Sci. 24(2), 218–240 (2005)

    Article  Google Scholar 

  40. Lee, T.Y., BradLow, E.T.: Automated marketing research using online customer reviews. J. Mark. Res. 48(5), 881–894 (2011)

    Article  Google Scholar 

  41. Ghose, A., Ipeirotis, P.G., Li, B.: Designing ranking systems for hotels on travel search engines by mining user-generated and crowdsourced content. Mark. Sci. 31(3), 493–520 (2012)

    Article  Google Scholar 

  42. Netzer, O., Feldman, R., Goldenberg, J., Fresko, M.: Mine your own business: market-structure surveillance through text mining. Mark. Sci. 31(3), 521–543 (2012)

    Article  Google Scholar 

  43. Anderson, E.T., Simester, D.I.: Reviews without a purchase: low ratings, loyal customers, and deception. J. Mark. Res. 51(3), 249–269 (2014)

    Article  Google Scholar 

  44. Ludwig, S., de Ruyter, K., Friedman, M., Brüggen, E.C., Wetzels, M., Pfann, G.: More than words: the influence of affective content and linguistic style matches in online reviews on conversion rates. J. Mark. 77(1), 87–103 (2013)

    Article  Google Scholar 

  45. Bag, S., Tiwari, M.K., Chan, F.T.S.: Predicting the consumer’s purchase intention of durable goods: an attribute-level analysis. J. Bus. Res. (2017). https://doi.org/10.1016/j.jbusres.2017.11.031

    Google Scholar 

  46. Kangale, A., Kumar, S.K., Naeem, M.A., Williams, M., Tiwari, M.K.: Mining consumer reviews to generate ratings of different product attributes while producing feature-based review-summary. Int. J. Syst. Sci. 47(13), 3272–3286 (2016)

    Article  Google Scholar 

  47. Rathan, M., Hulipalled, V.R., Venugopal, K.R., Patnaik, L.M.: Consumer insight mining: aspect based Twitter opinion mining of mobile phone reviews. Appl. Soft Comput. (2017). https://doi.org/10.1016/j.asoc.2017.07.056

    Google Scholar 

  48. Goldenberg, J., Oestreicher-Singer, G., Reichman, S.: The quest for content: how user-generated links can facilitate online exploration. J. Mark. Res. 49(4), 452–468 (2012)

    Article  Google Scholar 

  49. Trusov, M., Bodapati, A.V., Bucklin, R.E.: Determining influential users in internet social networks. J. Mark. Res. 47(4), 643–658 (2010)

    Article  Google Scholar 

  50. Hoffman, D.L., Fodor, M.: Can you measure the ROI of your social media marketing? MIT Sloan Manag. Rev. 52(1), 41 (2010)

    Google Scholar 

  51. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)

    Article  Google Scholar 

  52. Tirunillai, S., Tellis, G.J.: Does chatter really matter? Dynamics of user-generated content and stock performance. Mark. Sci. 31(2), 198–215 (2012)

    Article  Google Scholar 

  53. Büschken, J., Allenby, G.M.: Sentence-based text analysis for customer reviews. Mark. Sci. 35(6), 953–975 (2016)

    Article  Google Scholar 

  54. Chen, Y.-J., Kirmani, A.: Posting strategically: the consumer as an online media planner. J. Consum. Psychol. 25(4), 609–621 (2015)

    Article  Google Scholar 

  55. De Long, J.B., Shleifer, A., Summers, L.H., Waldmann, R.J.: Positive feedback investment strategies and destabilizing rational speculation. J. Finance 45(2), 379–395 (1990)

    Article  Google Scholar 

  56. Shleifer, A., Vishny, R.W.: The limits of arbitrage. J. Finance 52(1), 35–55 (1997)

    Article  Google Scholar 

  57. Klein, F.C., Prestbo, J.A.: News and the Market. H. Regnery Co., Washington (1974)

    Google Scholar 

  58. Engle, R.F., Ng, V.K.: Measuring and testing the impact of news on volatility. J. Finance 48(5), 1749–1778 (1993)

    Article  Google Scholar 

  59. Melvin, M., Yin, X.: Public information arrival, exchange rate volatility, and quote frequency. Econ. J. 110(465), 644–661 (2000)

    Article  Google Scholar 

  60. Ederington, L.H., Lee, J.H.: How markets process information: news releases and volatility. J. Finance 48(4), 1161–1191 (1993)

    Article  Google Scholar 

  61. Chan, W.S.: Stock price reaction to news and no-news: drift and reversal after headlines. J. Financ. Econ. 70(2), 223–260 (2003)

    Article  Google Scholar 

  62. Knowles, F.: Lexicographical aspects of health metaphors in financial texts. In: Euralex96 Proceedings (Part II). Göteborg University, Göteborg, Sweden, pp. 789–796 (1996)

  63. Das, S.R., Chen, M.Y.: Yahoo! for Amazon: sentiment extraction from small talk on the web. Manag. Sci. 53(9), 1375–1388 (2007)

    Article  Google Scholar 

  64. Antweiler, W., Frank, M.Z.: Is all that talk just noise? The information content of internet stock message boards. J. Finance 59(3), 1259–1294 (2004)

    Article  Google Scholar 

  65. Tetlock, P.C.: Giving content to investor sentiment: the role of media in the stock market. J. Finance 62(3), 1139–1168 (2007)

    Article  Google Scholar 

  66. Loughran, T.I.M., McDonald, B.: When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. J. Finance 66(1), 35–65 (2011)

    Article  Google Scholar 

  67. Tetlock, P.C., Saar-Tsechansky, M., Macskassy, S.: More than words: Quantifying language to measure firms’ fundamentals. J. Finance 63(3), 1437–1467 (2008)

    Article  Google Scholar 

  68. Stone, P., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The general inquirer: a computer approach to content analysis. J. Reg. Sci. 8(1), 113–116 (1968)

    Article  Google Scholar 

  69. Li, F.: Textual analysis of corporate disclosures: a survey of the literature. J. Account. Lit. 29, 143 (2010)

    Google Scholar 

  70. Sinha, N.R.: Underreaction to news in the US stock market. Q. J. Finan. 6(02), 1650005 (2016)

  71. Feldman, R., Govindaraj, S., Livnat, J., Segal, B.: Management’s tone change, post earnings announcement drift and accruals. Rev. Account. Stud. 15(4), 915–953 (2010)

    Article  Google Scholar 

  72. Davis, A.K., Tama-Sweet, I.: Managers’ use of language across alternative disclosure outlets: earnings press releases versus MD&A. Contemp. Account. Res. 29(3), 804–837 (2012)

    Article  Google Scholar 

  73. Demers, E., Vega, C.: Soft information in earnings announcements: news or noise? (2008) (Working Paper)

  74. Chen, X., Cheng, Q., Lo, A.K.: Is the decline in the information content of earnings following restatements short-lived? Account. Rev. 89(1), 177–207 (2013)

    Article  Google Scholar 

  75. Lamont, O., Christopher, P., Jesus, S.-R.: Financial Constraints and Stock returns. Rev. Finan. Stud. 14(2), 529–554 (2001)

    Article  Google Scholar 

  76. Kearney, C., Liu, S.: Textual sentiment in finance: a survey of methods and models. Int. Rev. Financ. Anal. 33, 171–185 (2014)

    Article  Google Scholar 

  77. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–679 (1993)

    Article  Google Scholar 

  78. Rogers, J.L., Van Buskirk, A., Zechman, S.L.C.: Disclosure tone and shareholder litigation. Account. Rev. 86(6), 2155–2183 (2011)

    Article  Google Scholar 

  79. Watson, D., Tellegen, A.: Toward a consensual structure of mood. Psychol. Bull. 98(2), 219 (1985)

    Article  Google Scholar 

  80. Kim, S., Li, F., Lebanon, G., Essa, I.: Beyond sentiment: the manifold of human emotions. In: Artificial Intelligence and Statistics 2013, pp. 360–369

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S. Opinion mining in management research: the state of the art and the way forward. OPSEARCH 55, 221–250 (2018). https://doi.org/10.1007/s12597-017-0328-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-017-0328-3

Keywords

Navigation