Skip to main content
Log in

Stock market prediction and Portfolio selection models: a survey

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Stock data is known to be chaotic in nature and it is a challenging task to predict the non-linear patterns of such data. Forming an optimal portfolio of stocks is yet another challenging task and limitations do exist in every portfolio model in some form or the other. In order to resolve such problems, many artificial intelligence models have appeared in literature which are also known as intelligent models. Prediction of stocks as well as investing in appropriate stocks has remained in focus among investors, industrialists as well as among academicians. This paper surveys important published articles in the related area available in literature. This survey highlights traditional mathematical models available in articles which have appeared decades back till artificial intelligence based models available in recent articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abu-Mostafa, Y.S., Atiya, A.F.: Introduction to financial forecasting. Appl. Intell. 6, 205–213 (1996)

    Article  Google Scholar 

  2. Adhikari, R., Agrawal, R.K.: A combination of artificial neural network and random walk models for financial time series forecasting. Neural Comput. Appl. 24, 1441–1449 (2014)

    Article  Google Scholar 

  3. Ahmed, E., El-Alem, M.: On multiobjective optimization in portfolio management. Appl. Math. Comput. 167, 616–621 (2005)

    Google Scholar 

  4. Akcay, Y., Yalcin, A.: Optimal portfolio selection with a shortfall probability constraint: evidence from alternative distribution functions. J. Financ. Res. 33, 77–102 (2010)

    Article  Google Scholar 

  5. Alexander, G.J., Baptist, A.M., Yan, S.: Mean–variance portfolio selection at-risk constraints and discrete and discrete distributions. J. Bank. Finance 31, 3761–3781 (2007)

    Article  Google Scholar 

  6. Altaya, N., Rudisillb, F., Litterala, L.A.: Adapting wright’s modification of holt’s method to forecasting intermittent demand. Int. J. Prod. Econ. 111, 389–408 (2008)

    Article  Google Scholar 

  7. Ammar, E.E.: On solutions of fuzzy random multiobjective quadratic programming with applications in portfolio problem. Inf. Sci. 178, 468–484 (2008)

    Article  Google Scholar 

  8. Anagnostopoulos, K.P., Mamanis, G.: Multiobjective evolutionary algorithms for complex portfolio optimization problems. Comput. Manag. Sci. 8, 259–279 (2011)

    Article  Google Scholar 

  9. Arajo, RdA, Oliveira, A.L.I., Meira, S.: A hybrid model for high-frequency stock market forecasting. Expert Syst. Appl. 42, 4081–4096 (2015)

    Article  Google Scholar 

  10. Araujo, RdA: A hybrid intelligent morphological approach for stock market forecasting. Neural Process. Lett. 31, 195–217 (2010)

    Article  Google Scholar 

  11. Araujo, RdA: A class of hybrid morphological perceptrons with application in time series forecasting. Knowl. Based Syst. 24, 513–529 (2011)

    Article  Google Scholar 

  12. Armananzas, R., Lozano, J.A.: A multiobjective approach to the portfolio optimization problem. In: IEEE Congress on Evolutionary Computation (2005)

  13. Armano, G., Marchesi, M., Murru, A.: A hybrid genetic-neural architecture for stock indexes forecasting. Inf. Sci. 170, 3–33 (2005)

    Article  Google Scholar 

  14. Asadi, S., Hadavandi, E., Mehmanpazir, F., Nakhostin, M.M.: Hybridization of evolutionary levenberg marquardt neural networks and data pre-processing for stock market predictionl. Knowl. Based Syst. 35, 245–258 (2012)

    Article  Google Scholar 

  15. Bansal, N., Strauss, J., Nasseh, A.: Can we consistently forecast a firms earnings? Using combination forecast methods to predict the eps of dow firms. J. Econ. Finance 39, 1–22 (2015)

    Article  Google Scholar 

  16. Bawa, V.: Safety-first, stochastic dominance, and optimal portfolio choice. J. Financ. Quant. Anal. 13, 255–271 (1978)

    Article  Google Scholar 

  17. Bera, A.K., Park, S.Y.: Optimal portfolio diversification using the maximum entropy principle. Econ. Rev. 27, 484–512 (2008)

    Article  Google Scholar 

  18. Best, M.J., Grauer, R.R.: On the sensitivity of mean–variance–efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financ. Stud. 4, 315–342 (1991)

    Article  Google Scholar 

  19. Best, M.J., Hlouskova, J.: The efficient frontier for bounded assets. Math. Methods Oper. Res. 52, 195–212 (2000)

    Article  Google Scholar 

  20. Box, G.E.P., Jenkins, G.M.: Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco (1970)

    Google Scholar 

  21. Brown, R.G.: Smoothing, Forecasting and Prediction. Courier Dover Publications, Mineola (2004)

    Google Scholar 

  22. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998)

    Article  Google Scholar 

  23. Celikyurt, U., Ozekici, S.: Multiperiod portfolio optimization models in stochastic markets using the mean–variance approach. Eur. J. Oper. Res. 179, 186–202 (2007)

    Article  Google Scholar 

  24. Cesarone, F., Scozzari, A., Tardella, F.: Efficient algorithms for mean–variance portfolio optimization with hard real-world constraints. In: The Proceedings of the 18th AFIR Colloquium: Financial Risk in a Changing Word (2008)

  25. Cesarone, F., Scozzari, A., Tardella, F.: A new method for mean–variance portfolio optimization with cardinality constraints. Ann. Oper. Res. 205, 213–234 (2013)

    Article  Google Scholar 

  26. Chen, A.S., Leung, M.T., Daouk, H.: Application of neural networks to an emerging financial market: forecasting and trading the taiwan stock index. Comput. Oper. Res. 30, 901–923 (2003)

    Article  Google Scholar 

  27. Chen, C.H.: Neural networks for financial market prediction. In: IEEE World Congress on Computational Intelligence, pp. 1199–1202. Orlando (1994)

  28. Chen, M.Y., Chen, B.T.: A hybrid fuzzy time series model based on granular computing for stock price forecasting. Inf. Sci. 294, 227–241 (2015)

    Article  Google Scholar 

  29. Chen, M.Y., Chen, D.R., Fan, M.H., Huang, T.Y.: International transmission of stock market movements: an adaptive neuro-fuzzy inference system for analysis of TAIEX forecasting. Neural Comput. Appl. 23, 369–378 (2013)

    Article  Google Scholar 

  30. Chen, Y., Lai, K.K., Du, J.: Modeling and forecasting hang seng index volatility with day-of-week effect, spillover effect based on ARIMA and HAR. Eurasian Econ. Rev. 4, 113–132 (2014a)

    Article  Google Scholar 

  31. Chen, Y.S., Cheng, C.H., Tsai, W.L.: Modeling fitting-function-based fuzzy time series patterns for evolving stock index forecasting. Appl. Intell. 41, 327–347 (2014b)

    Article  Google Scholar 

  32. Chiam, S.C., Mamun, A.A., Low, Y.L.: On multiobjective optimization in portfolio management. In: IEEE Congress on Evolutionary Computation (2007)

  33. Chiu, M.C., Liu, D.: Asset and liability management under a continuous-time mean–variance optimization framework. Insur. Math. Econ. 39, 330–355 (2006)

    Article  Google Scholar 

  34. Chopra, V.K., Ziemba, W.T.: The effect of errors in means, variances, and covariances on optimal portfolio choice. J. Portf. Manag. 19, 6–11 (1993)

    Article  Google Scholar 

  35. Colson, G., Bruyn, C.D.: An integrated multiobjective portfolio management system. Math. Comput. Model. 12, 1359–1381 (1989)

    Article  Google Scholar 

  36. Corazza, M., Favaretto, D.: On the existence of solutions to the quadratic mixed-integer mean–variance portfolio selection problem. Eur. J. Oper. Res. 176, 1947–1960 (2007)

    Article  Google Scholar 

  37. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    Google Scholar 

  38. Crama, Y., Schyns, M.: Simulated annealing for complex portfolio selection problems. Eur. J. Oper. Res. 150, 546–571 (2003)

    Article  Google Scholar 

  39. Cui, X., Zhu, S., Sun, X., Li, D.: Nonlinear portfolio selection using approximate parametric value-at-risk. J. Bank. Financ. 37, 2124–2139 (2013)

    Article  Google Scholar 

  40. Gomes, G.S.D.S., Ludermir, T.B., Leyla, M., Lima, M.R.: Compariosn of new activation functions in neural network for forecasting financial time series. Neural Comput. Appl. 20, 417–439 (2011)

    Article  Google Scholar 

  41. Dai, W., Wu, J.Y., Lu, C.J.: Combining nonlinear independent component analysis and neural network for the prediction of asian stock market indexes. Expert Syst. Appl. 39, 4444–4452 (2012)

    Article  Google Scholar 

  42. Dash, R., Dash, P.K., Bisoi, R.: A differential harmony search based hybrid interval type2 fuzzy EGARCH model for stock market volatility prediction. Int. J. Approx. Reason. 59, 81–104 (2015)

    Article  Google Scholar 

  43. de Fortuny, E.J., De Smedt, T., Martens, D., Daelemans, W.: Evaluating and understanding text-based stock price prediction models. Inf. Process. Manag. 50, 426–441 (2014)

    Article  Google Scholar 

  44. Deng, G.F., Lin, W.T., Lo, C.C.: Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization. Expert Syst. Appl. 39, 4558–4566 (2012)

    Article  Google Scholar 

  45. Deng, X., Li, R.: A portfolio selection model with borrowing constraint based on possibility theory. Appl. Soft Comput. 12, 754–758 (2012)

    Article  Google Scholar 

  46. Deng, X., Zhao, J.F.: Some new results on value ranges of risks for mean–variance portfolio models. Inf. Sci. 234, 217–225 (2013)

    Article  Google Scholar 

  47. Duan, L., Stahlecker, P.: A portfolio selection model using fuzzy returns. Fuzzy Optim. Decis. Mak. 10, 167–191 (2011)

    Article  Google Scholar 

  48. Durham, G.B.: SV mixture models with application to S&P 500 index returns. J. Financ. Econ. 85, 822–856 (2007)

    Article  Google Scholar 

  49. Elliott, R.J., Malcolm, W.P., Tsoi, A.H.: Robust parameter estimation for asset price models with markov modulated volatilities. J. Econ. Dyn. Control 27, 1391–1409 (2003)

    Article  Google Scholar 

  50. Elliott, R.J., Siu, T.K., Badescu, A.: On mean-variance portfolio selection under a hidden markovian regime-switching model. Econ. Model. 27, 678–686 (2010)

    Article  Google Scholar 

  51. Faust, J., Rogers, J.H., Wright, J.H.: Exchange rate forecasting: the errors weve really made. J. Int. Econ. 60, 35–59 (2003)

    Article  Google Scholar 

  52. Feinstein, C.D., Thapa, M.N.: Notes: a reformulation of a mean-absolute deviation portfolio optimization model. Manag. Sci. 39, 1552–1553 (1993)

    Article  Google Scholar 

  53. Fernandez, A., Gomez, S.: Portfolio selection using neural networks. Comput. Oper. Res. 34, 1177–1191 (2007)

    Article  Google Scholar 

  54. Freitas, F.D., De Souza, A.F., de Almeida, A.R.: Prediction-based portfolio optimization using neural networks. Neurocomputing 72, 2155–2170 (2009)

    Article  Google Scholar 

  55. Greco, S., Matarazzo, B., Slowinski, R.: Beyond markowitz with multiple criteria decision aiding. J. Bus. Econ. 83, 29–60 (2013)

    Article  Google Scholar 

  56. Grootveld, H., Hallerbach, W.: Variance vs downside risk: is there really that much difference. Eur. J. Oper. Res. 114, 304–319 (1999)

    Article  Google Scholar 

  57. Hafezi, R., Shahrabib, J., Hadavandi, E.: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: case study of DAX stock price. Appl. Soft Comput. 29, 196–210 (2015)

    Article  Google Scholar 

  58. Hamzacebi, C.: Improving artificial neural networks performance in seasonal time series forecasting. Inf. Sci. 178, 4550–4559 (2008)

    Article  Google Scholar 

  59. Hanssmann, F.: Probability of survival as an investment criterion. Manag. Sci. 15, 33–48 (1968)

    Article  Google Scholar 

  60. Horng, S.: Combining artificial bee colony with ordinal optimization for stochastic economic lot scheduling problem. IEEE Trans. Syst. Man Cybern. 45, 373–384 (2015)

    Article  Google Scholar 

  61. Hsieh, T.J., Hsiao, H.F., Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11, 2510–2525 (2011)

    Article  Google Scholar 

  62. Hsu, V.M.: A hybrid procedure with feature selection for resolving stock/futures price forecasting problems. Neural Comput. Appl. 22, 651–671 (2013)

    Article  Google Scholar 

  63. Huang, X.: Portfolio selection with a new de nition of risk. Eur. J. Oper. Res. 186, 351–357 (2008)

    Article  Google Scholar 

  64. Huang, C.L., Tsai, C.Y.: A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Syst. Appl. 36, 1529–1539 (2009)

    Article  Google Scholar 

  65. Huang, F., Sun, L., Wang, Y.: Mean–variance model based on filters of minimum spanning tree. J. Syst. Sci. Syst. Eng. 20, 495–506 (2011)

    Article  Google Scholar 

  66. Huang, J.J., Tzeng, G.H., Ong, C.S.: A novel algorithm for uncertain portfolio selection. Appl. Math. Comput. 173, 350–359 (2006)

    Google Scholar 

  67. Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 32, 2513–2522 (2005b)

    Article  Google Scholar 

  68. Huang, X.: Two new models for portfolio selection with stochastic returns taking fuzzy information. Eur. J. Oper. Res. 180, 396–405 (2007)

    Article  Google Scholar 

  69. Huang, X.: Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Math. 217, 1–8 (2008a)

    Article  Google Scholar 

  70. Huang, X.: Portfolio selection with a new definition of risk. Eur. J. Oper. Res. 186, 351–357 (2008b)

    Article  Google Scholar 

  71. Huang, X.: Mean-entropy models for fuzzy portfolio selection. IEEE Trans. Fuzzy Syst. 16, 1096–1101 (2008c)

    Article  Google Scholar 

  72. Huang, X.: Mean-risk model for uncertain portfolio selection. Fuzzy Optim. Decis. Mak. 10, 71–89 (2011)

    Article  Google Scholar 

  73. Huang, X., Qiao, L.: A risk model for multi-period uncertain portfolio selection. Inf. Sci. 217, 108–116 (2012)

    Article  Google Scholar 

  74. Hung, S.Y., Liang, T.P., Liu, V.W.: Integrating arbitrage pricing theory and artificial neural networks to support portfolio management. Decis. Support Syst. 18, 301–316 (1996)

    Article  Google Scholar 

  75. Jain, A., Kumar, A.M.: Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 7, 585–592 (2007)

    Article  Google Scholar 

  76. Jang, G.S., Lai, F., Parng, T.M.: Intelligent stock trading decision support system using dual adaptive-structure neural networks. J. Inf. Sci. Eng. 9, 271–297 (1993)

    Google Scholar 

  77. Jobson, J.D., Korkie, B.: Estimation for markowitz efficient portfolios. J. Am. Stat. Assoc. 75, 544–554 (1980)

    Article  Google Scholar 

  78. Kao, L.J., Chiu, C.C., Lu, C.J., Chang, C.H.: A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decis. Support Syst. 54, 1228–1244 (2013)

    Article  Google Scholar 

  79. Kaoa, L.J., Chiu, C.C., Lu, C.J., Yang, J.L.: Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing 99, 534–542 (2013)

    Article  Google Scholar 

  80. Kato, K., Konno, H.: Studies on a general-bond integrated portfolio optimization model. Comput. Manag. Sci. 4, 41–57 (2007)

    Article  Google Scholar 

  81. Khashei, M., Bijari, M.: An artificial neural network \((p, d, q)\) model for timeseries forecasting. Expert Syst. Appl. 37, 479–489 (2010)

    Article  Google Scholar 

  82. Kim, K.J., Han, I.: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 19, 125–132 (2000)

    Article  Google Scholar 

  83. Kim, K.J., Ahn, H.: Simultaneous optimization of artificial neural networks for financial forecasting. Appl. Intell. 36, 887–898 (2012)

    Article  Google Scholar 

  84. Kim, M.J., Han, I., Lee, K.C.: Hybrid knowledge integration using the fuzzy genetic algorithm: prediction of the Korea stock price index. Intell. Syst. Account. Finance Manag. 12, 43–60 (2004)

    Article  Google Scholar 

  85. Konno, H., Kobayashi, K.: An integrated stock-bond portfolio optimization model. J. Econ. Dyn. Control 21, 1427–1444 (1997)

    Article  Google Scholar 

  86. Konno, H., Wijayanayake, A.: Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math. Program. 89, 233–250 (2001)

    Article  Google Scholar 

  87. Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

    Article  Google Scholar 

  88. Krasnozhon, L., Levendis, J.: Mises and prediction markets: can markets forecast? Rev. Austrian Econ. 28, 41–52 (2015)

    Article  Google Scholar 

  89. Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  Google Scholar 

  90. Kumar, R., Bhattacharya, S.: Cooperative search using agents for cardinality constrained portfolio selection problem. IEEE Trans. Syst. Man Cybern. 42, 1510–1518 (2012)

    Article  Google Scholar 

  91. Kwon, Y.K., Moon, B.R.: A hybrid neurogenetic approach for stock forecasting. IEEE Trans. Neural Netw. 18, 851–864 (2007)

    Article  Google Scholar 

  92. Lannea, M., Luotoa, J., Saikkonen, P.: Optimal forecasting of noncausal autoregressive time series. Int. J. Forecast. 28, 623–631 (2012)

    Article  Google Scholar 

  93. Leung, M.T., Daouk, H., Chen, A.S.: Using investment portfolio return to combine forecasts: a multiobjective approach. Eur. J. Oper. Res. 134, 84–102 (2001)

    Article  Google Scholar 

  94. Li, T., Zhang, W., Xu, W.: A fuzzy portfolio selection model with background risk. Appl. Math. Comput. 256, 505–513 (2015)

    Google Scholar 

  95. Li, Z., Shu, H.: Optimal portfolio selection with liability management and Markov switching under constrained variance. Comput. Math. Appl. 61, 2271–2277 (2011)

    Article  Google Scholar 

  96. Liao, Z., Wang, J.: Forecasting model of global stock index by stochastic time effective neural network. Expert Syst. Appl. 37, 834–841 (2010)

    Article  Google Scholar 

  97. Liu, Y.J., Zhang, W.G.: A multi-period fuzzy portfolio optimization model with minimum transaction lots. Eur. J. Oper. Res. 242, 933–941 (2015)

    Article  Google Scholar 

  98. Lu, C.J.: Hybridizing nonlinear independent component analysis and support vector regression with particle swarm optimization for stock index forecasting. Neural Comput. Appl. 23, 2417–2427 (2013)

    Article  Google Scholar 

  99. Majhi, R., Panda, G.: Prediction of S&P 500 and djia stock indices using particle swarm optimization technique. In: IEEE World Congress on Computational Intelligence, pp. 1276–1282. Hong Kong (2008)

  100. Malkiel, B.G.: A Random Walk Down Wall Street: The Time-Tested Strategy for Successful Investing Rev. W. W. Norton & Co., New York (2008)

    Google Scholar 

  101. Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  102. Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments, 2nd edn. Wiley, New York (1991)

    Google Scholar 

  103. Markowitz, H., Todd, P., Xu, G., Yamane, Y.: Computation of mean semivariance efficient sets by the critical line algorithms. Ann. Oper. Res. 45, 307–317 (1993)

    Article  Google Scholar 

  104. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  Google Scholar 

  105. Mehlawat, M.K., Gupta, P.: Fuzzy chance-constrained multiobjective portfolio selection model. IEEE Trans. Fuzzy Syst. 22, 653–671 (2014)

    Article  Google Scholar 

  106. Mostafa, M.M.: Forecasting stock exchange movements using neural networks: empirical evidence from Kuwait. Expert Syst. Appl. 37, 6302–6309 (2010)

    Article  Google Scholar 

  107. Oh, K.J., Kim, K.J.: Analyzing stock market tick data using piecewise nonlinear model. Expert Syst. Appl. 22, 249–255 (2002)

    Article  Google Scholar 

  108. Pai, P.F., Lin, C.S.: A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 33, 497–505 (2005)

    Article  Google Scholar 

  109. Patel, J., Shah, S., Thakkar, P., Kotecha, K.: Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Syst. Appl. 42, 259–268 (2015)

    Article  Google Scholar 

  110. Perold, A.F.: Large-scale portfolio optimization. Manag. Sci. 30, 1143–1160 (1984)

    Article  Google Scholar 

  111. Popkov, A.Y.: Entropy model of the investment portfolio. Autom. Remote Control 67, 1518–1528 (2006)

    Article  Google Scholar 

  112. Rather, A.M.: A prediction based approach for stock returns using autoregressive neural networks. In: World Congress on Information and Communication Technologies, IEEE, pp. 1271–1275. Mumbai (2011)

  113. Rather, A.M.: Optimization of predicted portfolio using various autoregressive neural networks. In: International Conference on Communication Systems and Network Technologies, IEEE, pp. 265–269. Rajkot (2012)

  114. Rather, A.M., Sastry, V.N., Agarwal, A.: Portfolio selection using maximum-entropy gain loss spread model: a GA based approach. In: IEEE Conference on Advances in Computing, Communications and Informatics, pp. 400–406. New Delhi (2014)

  115. Rather, A.M., Agarwal, A., Sastry, V.N.: Recurrent neural network and a hybrid model for prediction of stock returns. Expert Syst. Appl. 42, 3234–3241 (2015)

    Article  Google Scholar 

  116. Rios, L.M., Sahinidis, N.V.: Portfolio optimization for wealth-dependent risk preferences. Ann. Oper. Res. 177, 63–90 (2010)

    Article  Google Scholar 

  117. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  118. Roy, A.D.: Safety first and the holding of assets. Econometrics 20, 431–439 (1952)

    Article  Google Scholar 

  119. Roy, A.D.: Risk and rank or safety first generalised. Economica 91, 215–229 (1956)

    Google Scholar 

  120. Sadjadi, S.J., Gharakhani, M., Safari, E.: Robust optimization framework for cardinality constrained portfolio problem. Appl. Soft Comput. 12, 91–99 (2012)

    Article  Google Scholar 

  121. Sharpe, W.F.: A linear programming algorithm for mutual fund portfolio selection. Manag. Sci. 13, 499–510 (1967)

    Article  Google Scholar 

  122. Shen, W., Guo, X., Wu, C., Wu, D.: Forecasting stock indices using radial function neural networks optimized by artificial fish swarm algorithm. Knowl. Based Syst. 24, 378–385 (2011)

    Article  Google Scholar 

  123. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications with R Examples. Springer, New York (2006)

    Google Scholar 

  124. Steiner, M., Wittkemper, H.H.: Portfolio optimization with a neural network implementation of the coherent market hypothesis. Eur. J. Oper. Res. 100, 27–40 (1997)

    Article  Google Scholar 

  125. Vaclavik, M., Jablonsky, J.: Revisions of modern portfolio theory optimization model. Cent. Eur. J. Oper. Res. 20, 473–483 (2012)

    Article  Google Scholar 

  126. Wang, J., Wang, J.: Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing 156, 68–78 (2015)

    Article  Google Scholar 

  127. Wang, J.J., Wang, J.Z., Zhang, Z.G., Guo, S.P.: Stock index forecasting based on a hybrid model. Omega 40, 758–766 (2012)

    Article  Google Scholar 

  128. Wang, J.Z., Wang, J.J., Zhang, Z.G., Guo, S.P.: Forecasting stock indices with backpropagation neural network. Expert Syst. Appl. 39, 14346–14355 (2011)

    Google Scholar 

  129. White, H.: Economic prediction using neural networks: the case of IBM daily stock returns. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 451–458 (1988)

  130. Wold, H.O.: A Study in the Analysis of Stationary Time Series. Almgrist & Wiksell, Stockholm (1938)

    Google Scholar 

  131. Wong, B.K., Selvi, Y.: Neural network applications in finance: a review and analysis of literature (1990–1996). Inf. Manag. 34, 129–139 (1998)

    Article  Google Scholar 

  132. Xia, Y., Liu, B., Wang, S., Lai, K.K.: A model for portfolio selection with order of expected returns. Comput. Oper. Res. 27, 409–422 (2000)

    Article  Google Scholar 

  133. Xiang, Y.H., Fei, L.Z.: Portfolio selection with different borrowing-lending rates: utility maximization model based on mean and VaR. Syst. Eng. Theory Pract. 20, 22–29 (2009)

    Article  Google Scholar 

  134. Xue, H.G., Xu, C.X., Feng, Z.X.: Mean–variance portfolio optimal problem under concave transaction cost. Appl. Math. Comput. 174, 1–12 (2006)

    Google Scholar 

  135. Yang, Y.: Multi-portfolio optimization: a potential game approach. IEEE Trans. Signal Process. 61, 5590–5602 (2013)

    Article  Google Scholar 

  136. Yule, G.U.: Why do we sometimes get nonsense correlations between time series? A study in sampling and the nature of time series. J. R. Stat. Soc. 89, 30–41 (1926)

    Article  Google Scholar 

  137. Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  Google Scholar 

  138. Zhang, W.G., Zhang, X.L., Xiao, W.L.: Portfolio selection under possibilistic mean–variance utility and a SMO algorithm. Eur. J. Oper. Res. 197, 693–700 (2009)

    Article  Google Scholar 

  139. Zhang, X., Zhang, W.G., Xu, W.J.: An optimization model of the portfolio adjusting problem with fuzzy return and a SMO algorithm. Expert Syst. Appl. 38, 3069–3074 (2011)

    Article  Google Scholar 

  140. Zhanga, X., Hu, Y., Xie, K., Wang, S., Ngai, E.W.T., Liu, M.: A causal feature selection algorithm for stock prediction modeling. Neurocomputing 142, 48–59 (2014)

    Article  Google Scholar 

  141. Zhao, S., Lu, Q., Han, L., Liu, Y., Hu, F.: A mean-CVaR-skewness portfolio optimization model based on asymmetric laplace distribution. Ann. Oper. Res. 226, 727–739 (2015)

    Article  Google Scholar 

  142. Zheng, Y., Lin, Z., Tay, D.B.H.: State-dependent vector hybrid linear and nonlinear arma modeling: applications. Circuits Syst. Signal Process. 20, 575–597 (2001)

    Article  Google Scholar 

  143. Zhong, S.N., Min, L., Rong, Z.S., Xue, Z.B.: Optimal algorithms and sharpes ratio with no short-selling. Sci. China Ser. A Math. 51, 2033–2042 (2008)

    Article  Google Scholar 

  144. Zhu, S., Fan, M., Li, D.: Portfolio management with robustness in both prediction and decision: a mixture model based learning approach. J. Econ. Dyn. Control 48, 1–25 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Research support from School of Computer and Information Sciences, University of Hyderabad is highly acknowledged. The authors would like to thank Institute for Development and Research in Banking Technology, for its constant support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhter Mohiuddin Rather.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, A.M., Sastry, V.N. & Agarwal, A. Stock market prediction and Portfolio selection models: a survey. OPSEARCH 54, 558–579 (2017). https://doi.org/10.1007/s12597-016-0289-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-016-0289-y

Keywords

Navigation