Skip to main content
Log in

On the Fritz John saddle point problem for differentiable multiobjective optimization

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this contribution, the relationship between saddle points of Lagrangian functions associated with the inequality constrained multiobjective optimization problem and Fritz John critical points are presented under generalized notions of convexity. Assuming invexity and an extended Slater-type condition upon the multiobjective problem, a regular solution to the Fritz-John system is obtained that encompasses all the objective functions. Also, a new class of generalized convex problems is defined, and its connections with other existing classes are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gobbi, M., Levi, F., Mastinu, G., Previati, G.: On the analytical derivation of the Pareto-optimal set with applications to structural design. Struct. Multidiscip. Optim. 51, 645–657 (2015)

    Article  Google Scholar 

  2. Soleimani-Damaneh, M.: An optimization modelling for string selection in molecular biology using Pareto optiMality. Appl. Math. Model. 35, 3887–3892 (2011)

    Article  Google Scholar 

  3. Pardalos, P. M., Migdalas, A., Pitsoulis, L. (eds.): Pareto optimality, game theory and equilibria. Springer (2008)

  4. Ignatius, J., Mustafa, A.: A multi-objective sensitivity approach to training providers’ evaluation and quota allocation planning. Int. J. Inf. Technol. Decis. Mak. 10(1), 147–174 (2011)

    Article  Google Scholar 

  5. Şakar, C. T., Köksalan, M.: Effects of multiple criteria on portfolio optimization. Int. J. Inf. Technol. Decis. Mak. 13(1), 77–99 (2014)

    Article  Google Scholar 

  6. Boţ, R. I., Grad, S. M., Wanka, G.: Duality in vector optimization. Springer, Heildelberg (2009)

    Google Scholar 

  7. Luc, D. T.: On duality theory in multiobjective programming. J. Optim. Theory Appl. 43(4), 557–582 (1984)

    Article  Google Scholar 

  8. Tanino, R., Sawaragi, W.: Duality theory in multiobjective programming. J. Optim. Theory Appl. 27(4), 509–529 (1979)

    Article  Google Scholar 

  9. Bigi, G., Pappalardo, M.: On Lagrangian saddle points in vector optimization. In: Giorgi, G., Rossi, F. (eds.) Generalized Convexity and Optimization for Economic and Financial Decisions, pp 33–46. Pitagora (1999)

  10. Ben-Israel, A., Mond, B.: What is invexity? J. Aust. Math. Soc. (Series B) 28, 1–9 (1986)

    Article  Google Scholar 

  11. Hanson, M.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981)

    Article  Google Scholar 

  12. Hanson, M., Rueda, N. G.: A sufficient condition for invexity. J. Math. Anal. Appl. 138, 193–198 (1989)

    Article  Google Scholar 

  13. Osuna-Gómez, R., Rufián-Lizana, A., Ruíz-Canales, P.: Invex functions and generalized convexity in multiobjective programming. J. Optim. Theory Appl. 98(3), 651–661 (1998)

    Article  Google Scholar 

  14. Fan, K.: Minimax theorems Proceedings of the national academy of sciences of the United States of America, pp 42-47. National Academy of Sciences, U.S.A (1953)

  15. Frenk, J. B. G., Kassay, G.: On classes of generalized convex functions, Gordan-Farkas type theorems, and lagrangian duality. J. Optim. Theory Appl. 102 (2), 315–343 (1999)

    Article  Google Scholar 

  16. Illes, T., Kassay, G.: Theorems of the alternative and optimality conditions for convexlike and general convexlike programming. J. Optim. Theory Appl. 101(2), 243–257 (1994)

    Article  Google Scholar 

  17. Bae, K. D., Kang, Y. M., Kim, D. S.: Efficiency and generalized convex duality for nondifferentiable multiobjective programs, Journal of Inequalities and Applications, Article ID 930457, 10 pages (2010)

  18. Kharbanda, P., Agarwal, D., Sinha, D.: Multiobjective programming under (ϕ,d)-V-Type I univexity. Operations Research Decision Theory 52(1), 168–185 (2015)

    Google Scholar 

  19. Soleimani-Damaneh, M.: Generalized convexity and characterization of (weak) pareto- optimality in nonsmooth multiobjective optimization problems. Int. J. Inf. Technol. Decis. Mak. 14(4), 877–899 (2015)

    Article  Google Scholar 

  20. Bigi, G., Pappalardo, M.: Regularity conditions in vector optimization. J. Optim. Theory Appl. 102, 83–96 (1999)

    Article  Google Scholar 

  21. Maciel, M. C., Santos, S. A., Sottosanto, G. N.: Regularity conditions in differentiable vector optimization revisited. J. Optim. Theory Appl. 142, 385–398 (2009)

    Article  Google Scholar 

  22. Burachik, R. S., Rizvi, M. M.: On weak and strong Kuhn-Tucker conditions for smooth multiobjective optimization. J. Optim. Theory Appl. 155(2), 477–491 (2012)

    Article  Google Scholar 

  23. Maciel, M. C., Santos, S. A., Sottosanto, G. N.: On second-order optimality conditions for vector optimization. J. Optim. Theory Appl. 149, 332–351 (2011)

    Article  Google Scholar 

  24. Maciel, M. C., Santos, S. A., Sottosanto, G. N.: On Second-Order Optimality Conditions for Vector Optimization: Addendum. J. Optim. Theory Appl. (2012). doi:10.1007/s10957-012-0029-2

    Google Scholar 

  25. Santos, L. B., Osuna-Gómez, R., Hernández-Jiménez, B., Rojas-Medar, M. A.: Necessary and sufficient second order optiMality conditions for multiobjective problems with C 1 data. Nonlinear Anal. 85, 192–203 (2013)

    Article  Google Scholar 

  26. Ivanov, V. I.: Second- and first-order optimality conditions in vector optimization. Int. J. Inf. Technol. Decis. Mak. 14(4), 747–767 (2015)

    Article  Google Scholar 

  27. Kuhn, H. W., Tucker, A. W.: Nonlinear Programming Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 481–492. University of California Press, Berkeley (1952)

    Google Scholar 

  28. Geoffrion, A. M.: Proper efciency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968)

    Article  Google Scholar 

  29. Mangasarian, O. L.: Pseudo-convex functions. SIAM J. Control. Optim. 3, 281–290 (1965)

    Google Scholar 

  30. Martínez-Legaz, J. E.: What is invexity with respect to the same η? Taiwan. J. Math. 13(2B), 753–755 (2009)

    Google Scholar 

  31. Craven, B. D., Glover, B. M.: Invex Functions and Duality. J. Aust. Math. Soc.(Series A) 39, 1–20 (1985)

    Article  Google Scholar 

  32. Mishra, S. K., Giorgi, G.: Invexity and optimization nonconvex optimization and its applications, vol. 88. Springer, Berlin Heidelberg (2008)

  33. Zălinescu, C.: A critical view on invexity. J. Optim. Theory Appl. 162(3), 695–704 (2014)

    Article  Google Scholar 

  34. Martin, D. H.: The essence of invexity. J. Optim. Theory Appl. 47(1), 65–76 (1985)

    Article  Google Scholar 

  35. Osuna-Gómez, R., Beato-Moreno, A., Rufián-Lizana, A.: Generalized convexity in multiobjective programming. J. Math. Anal. Appl. 233, 205–220 (1999)

    Article  Google Scholar 

  36. Craven, B. D.: Invex functions and constrained local minima. Bull. Aust. Math. Soc. 24(3), 357–366 (1981)

    Article  Google Scholar 

  37. Xu, Z. K.: On invexity-type nonlinear programming problems. J. Optim. Theory Appl. 80(1), 135–148 (1994)

    Article  Google Scholar 

  38. Ivanov, V. I.: On the optiMality of some classes of invex problems. Optim. Lett. 6, 43–54 (2012)

    Article  Google Scholar 

  39. Jahn, J., : Vector optimization: Theory, applications and extensions, 2ed Springer (2011)

  40. Bigi, G., Pappalardo, M.: Generalized Lagrange multipliers: regularity and boundedness. In: Di Pillo, G., Giannessi, F. (eds.) Nonlinear Optimization and Related Topics, pp 1–14. Kluwer (2000)

  41. Bigi, G.: Optimality and Lagrangian regularity in vector optimization. Ph.D. thesis, Dipartimento di Matematica, Università di Pisa, Italy. http://www.di.unipi.it/bigig/mat/abstracts/thesis.html (1999)

  42. Maeda, T.: Constraint qualifications in multiobjective optimization problems: differentiable case. J. Optim. Theory Appl. 80(3), 483–500 (1994)

    Article  Google Scholar 

  43. Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear programming: Theory and algorithms, 2ed. Wiley, New York (1993)

    Google Scholar 

  44. Mangasarian, O. L.: Nonlinear Programming, SIAM, Philadelphia (1994)

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers, whose comments improved the presentation of the manuscript. This work was partially supported by the grants UNS 24/L082, E097/13, CNPq 304032/2010-7, FAPESP 2013/05475-7 and 2013/07375-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra A. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel, M.C., Santos, S.A. & Sottosanto, G.N. On the Fritz John saddle point problem for differentiable multiobjective optimization. OPSEARCH 53, 917–933 (2016). https://doi.org/10.1007/s12597-016-0253-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-016-0253-x

Keywords

Navigation