OPSEARCH

, Volume 53, Issue 3, pp 648–665

# A Newton method for capturing efficient solutions of interval optimization problems

• Debdas Ghosh
Theoretical Article

## Abstract

In this article, we propose a Newton method to obtain an efficient solution for interval optimization problems. In the concept of an efficient solution of the problem, a suitable partial ordering for a pair of intervals is used. The notion of generalized Hukuhara difference of intervals, and hence, the generalized Hukuhara differentiability of multi-variable interval-valued functions is analyzed to develop the proposed method. The objective function in the problem is assumed to be twice continuously generalized Hukuhara differentiable. Under this hypothesis, it is shown that the method has a local quadratic rate of convergence. In order to improve the local convergence of the method to a global convergence, an updated Newton method is also proposed. The sequential algorithms and the convergence results of the proposed methods are demonstrated. The methodologies are illustrated with suitable numerical examples.

## Keywords

Interval optimization Interval-valued function Efficient solution gH-differentiability Newton method

## Notes

### Acknowledgments

The author gratefully acknowledges the financial support through Research Initiation Grant and through Outstanding Potential for Excellence in Research and Academics Award 2014, BITS Pilani, Hyderabad Campus, India.

## References

1. 1.
Ahmad, I., Jayswal, A., Banerjee, J.: On interval-valued optimization problems with generalized invex functions. J. Ineq. Appl. 2013, 313 (2013)
2. 2.
Bhurjee, A.K., Panda, G.: Efficient solution of interval optimization problem. Math Meth. Oper. Res. 76(3), 273–288 (2012)
3. 3.
Bhurjee, A.K., Panda, G.: Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 52(1), 156–167 (2015)
4. 4.
Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–10 (2014)
5. 5.
Chalco-Cano, Y., Rufian-Lizana, A., Roman-Flores, H., Jimenez-Gamero, M.D.: Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 219, 49–67 (2013)
6. 6.
Chalco-cano, Y., Silva, G.N., Rufian-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)
7. 7.
Ghosh, D., Chakraborty, D.: A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets Syst. 272, 1–29 (2015)
8. 8.
Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)
9. 9.
Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)Google Scholar
10. 10.
Ghosh, D., Chakraborty, D.: A direction based classical method to obtain complete Pareto set of multi-criteria optimization problems. Opsearch 52(2), 340–366 (2015)
11. 11.
Ghosh, D., Chakraborty, D.: A new Pareto set generating method for multi-criteria optimization problems. Oper. Res. Lett. 42, 514–521 (2014)
12. 12.
Hansen, W.G.E.: Global optimization using interval analysis. Marcel Dekker, New York (2004)Google Scholar
13. 13.
Hladik, M.: Interval linear programming: a survey. Nova, New York (2012)Google Scholar
14. 14.
Hu, B., Wang, S.: A novel approach in uncertain programming, Part I: new arithmetic and order relation of interval numbers. Journal Ind Manag. Optim. 2(4), 351–371 (2006)
15. 15.
Hukuhara, M.: Integration des applications mesurables dont la valeur est un compact convexe. Funkc. Ekvacioj. 10, 205–223 (1967)Google Scholar
16. 16.
Ishibuchi, H., Tanaka, H.: Multiobjective programming in optimization of the interval objective function. Eur. J. Oper. Res. 48(2), 219–225 (1990)
17. 17.
Jana, M., Panda, G.: Solution of nonlinear interval vector optimization problem. Oper. Res. Int. J. 14, 71–85 (2014)
18. 18.
Jayswal, A., Stancu-Minasian, I., Ahmed, I.: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218(8), 4119–4127 (2011)Google Scholar
19. 19.
Jeyakumar, V., Li, G.Y.: Robust duality for fractional programming problems with constraint-wise data uncertainty. Eur. J. Oper. Res. 151(2), 292–303 (2011)Google Scholar
20. 20.
Jiang, C., Han, X., Liu, G.R.: A nonlinear interval number programming method for uncertain optimization problems. Eur. J. Oper. Res. 188(1), 1–13 (2008)
21. 21.
Kumar, P., Panda, G., Gupta, U.C.: Generalized quadratic programming problem with interval uncertainty, FUZZ IEEE 2013. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ) (2013)Google Scholar
22. 22.
Li, W., Tian, X.: Numerical solution method for general interval quadratic programming. Appl. Math Comput. 202(2), 589–595 (2008)Google Scholar
23. 23.
Liu, S.T., Wang, R.T.: A numerical solution method to interval quadratic programming. Appl. Math. Comput. 189(2), 1274–1281 (2007)Google Scholar
24. 24.
Luciana, T.G., Barrosb, L.C.: A note on the generalized difference and the generalized differentiability. Fuzzy Sets Syst 280, 142–145 (2015)
25. 25.
Markov, S.: Calculus for interval interval function of a real variable. Computing 22, 325–337 (1979)
26. 26.
Moore, R.: Interval analysis. Prentice-Hall, Englewood Cliffs, NJ (1966)Google Scholar
27. 27.
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM (2009)Google Scholar
28. 28.
Stefanini, L.: A generalization of Hukuhara difference. In: Soft Methods for Handling Variability and Imprecision, in: Series on Advances in Soft Computing. 2008, vol. 48, pp 203–210. Springer, Berlin Heidelberg New York (2008)Google Scholar
29. 29.
Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 161, 1564–1584 (2010)Google Scholar
30. 30.
Wang, H., Zhang, R.: Optimality conditions and duality for arcwise connected interval optimization problems. Opsearch 52(4), 870–883 (2015)Google Scholar
31. 31.
Wu, H.C.: On interval-valued nonlinear programing problem. J. Math. Anal. Appl. 338(1), 299–316 (2008)
32. 32.
Wu, H.C.: Dulity theory for optimization problems with interval-valued objetive fuction. J. Optim. Theory Appl. 144(3), 615–628 (2009)
33. 33.
Wu, H.C.: Duality theory in interval-valued linear programming problems. J. Optim. Theory Appl. 150, 298–316 (2011)