Skip to main content

Advertisement

Log in

Entropy based solid transportation problems with discounted unit costs under fuzzy random environment

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This paper investigates some multi-objective fixed charge solid transportation problems (FCSTPs) under fuzzy-random environment with fuzzy-random fixed charges and transportation times. Here objectives are total transportation cost and time which are minimized. Unit transportation costs are crisp and three types of discount i.e. All Unit Discount (AUD), Incremental Quantity Discount (IQD), IQD within AUD are applied upon these costs. In the first model (Model-I) supplies, demands and capacities of conveyances are assumed to be fuzzy-random in nature. These quantities are fuzzy in the second model (Model-II). Imprecise objectives of the models are transformed into equivalent crisp ones using random expectation and fuzzy possibility/necessity measures on fuzzy event. Imprecise constraints are reduced to equivalent crisp constraints using two different fuzzy-random chance constraint methods. Similarly constraints of Model-II are reduced to equivalent crisp constraints with the use of possibility and necessity measures on fuzzy events. Models are also formulated with and without entropy function. Finally transformed constrained multi-objective deterministic problems are solved using a multi-objective genetic algorithm (MOGA) based on arithmetic crossover and boundary mutation. Moreover, Model-IA1 is converted to a single objective non-linear programming (SONLP) problem following fuzzy non-linear programming (FNLP) technique and the reduced Model-IA1S is solved using generalized reduced gradient (GRG) method (using LINGO software). Numerical examples are used for illustration and comparison of the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Buckley, J.J.: Fuzzy Probabilities:New Approach and Applications. Physica-Verlag, Heidelberg (2003)

    Book  Google Scholar 

  2. Buckley, J.J., Eslami, E.: Uncertain probabilities-1. Soft. Comput. 7, 500–505 (2003)

    Article  Google Scholar 

  3. Bit, A.K., Biswal, M.P., Alam, S.S.: Fuzzy programming approach to multi-objective solid transportation problem. Fuzzy Sets Syst. 157, 183–194 (1993)

    Article  Google Scholar 

  4. Chalam, G.A.: Fuzzy goal programming (FGP) approach to a stochastic transportation problem under budgetary constraint. Fuzzy Sets Syst. 66, 293–299 (1994)

    Article  Google Scholar 

  5. Cooper, L.: The stochastic transportation-location problem. Comput. Math. Appl. 4, 265–275 (1978)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm. NSGA-11 IEEE Transp. Evol. Comput., 182–197 (2002)

  7. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30, 183–224 (1983)

    Article  Google Scholar 

  8. Feng, Y.: Gaussian fuzzy random variables. Fuzzy Sets Syst. 111, 325–330 (2000)

    Article  Google Scholar 

  9. Gen, M., Ida, K., Li, Y., Kubota, E.: Solving bicriteria solid transportation problem with fuzzy numbers by a genetic algorithm. Comput. Ind. Eng. 29, 537–541 (1995)

    Article  Google Scholar 

  10. Gottlieb, J., Paulmann, L.: Genetic algorithms for the fixed charge transportation problems. In: Proceedings of the IEEE Conference on Evolutionary Computation, pp. 330335. ICEC (1998)

  11. Haley, K.B.: The solid transportation problem. Oper. Res. 11, 446–448 (1962)

    Google Scholar 

  12. Hirsch, W.M., Dantzig, G.B.: The fixed charge problem. Naval Research. Logist. Q. 15, 413–424 (1968)

    Article  Google Scholar 

  13. Holland, H.J.: Adaptation in Natural and Artificial Systems. University of Michigan (1975)

  14. Jia, J., Chen, J., Chang, G., Tan, Z.: Energy efficient converge control in wireless sensor networks based on multi-objective genetic algorithem. Comput. Math. Appl. 57(11–12), 1756–1766 (2009)

    Article  Google Scholar 

  15. Jimenez, F., Verdegay, J.L.: Interval multi objective solid transportation problem via genetic algorithms. Manag. Uncertain. Knowl.-Based Syst. 11, 787–792 (1996)

    Google Scholar 

  16. Jimenez, F., Verdegay, J.L.: Uncertain solid transportation problem. Fuzzy Sets Syst. 100, 45–57 (1998)

    Article  Google Scholar 

  17. Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Application.Academic, San Diego (1992)

    Google Scholar 

  18. Katagiri, H., Sakawa, M., Kato, K., Nishizaki, I.: A fuzzy random multi-objective 01 programming based on the expectation optimization model using possibility and necessity measures. Math. Comput. Model. 40, 411–421 (2004)

    Article  Google Scholar 

  19. Kaur, A., Kumar, A.: A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 12, 1201–1213 (2012)

    Article  Google Scholar 

  20. Kennington, J.L., Unger, V.E.: A new branch and bound algorithm for the fixed charge transportation problem. Manag. Sci. 22, 1116–1126 (1976)

    Article  Google Scholar 

  21. Keshavarz, E., Khorram, E.: A fuzzy bi-criteria transportation problem. Comput. Ind. Eng. 61, 947–957 (2011)

    Article  Google Scholar 

  22. Kruse, R., Meyer, K.D.: Statistics with Vague Data. D. Riedel Publishing Company, Dordrecht (1987)

    Book  Google Scholar 

  23. Kwakernaak, H.: Fuzzy random variables I. Definitions and theorems. Inf. Sci. 15(1), 129 (1978)

    Article  Google Scholar 

  24. Li, Y., Ida, K., Gen, M.: Improved genetic algorithm for solving multi objective solid transportation problem with fuzzy numbers. Comput. Ind. Eng. 33, 589–592 (1997)

    Article  Google Scholar 

  25. Li, J., Xu, J., Gen, M.: A class of multiobjective linear programming model with fuzzy random coefficients. Math. Comput. Model. 44, 1097–1113 (2006)

    Article  Google Scholar 

  26. Liu, B.: Stackelberg-Nash equilibrium for multilevel programming with multiple flowers using genetic algorithms. Comput. Math. Appl. 36(7), 79–89 (1998)

    Article  Google Scholar 

  27. Liu, B.: Uncertainty theory: An Introduction to its axiomatic Foundation, Springer-Verleg, Berlin (2004).

    Book  Google Scholar 

  28. Liu, B., Iwamura, K.: A note on chance constrained programming with fuzzy coefficients. Fuzzy Sets Syst. 100, 229–233 (1998)

    Article  Google Scholar 

  29. Liu, S.L., Kao, C.: Solving fuzzy transportation problems based on extension principle. Eur. J. Oper. Res. 153, 661–674 (2004)

    Article  Google Scholar 

  30. Liu, S.: Fuzzy total transportation cost measures for fuzzy solid transportation problem. Appl. Math. Comput. 174, 927–941 (2006)

    Article  Google Scholar 

  31. Malekly, H., Haddadi, B., Tavakkoli-Moghadam, R.: A fuzzy random vehicle routing problem: the case of Iran. In: Proceeding of the 39th International Conference on Computers and Industrial Engineering, pp. 1070–1075 (2009)

  32. Michalewicz, Z., Janikow, C.: Genetic algorithms for numerical optimization. Stat. Comput. 1, 75–91 (1991)

    Google Scholar 

  33. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Third revised and extended (1992)

    Book  Google Scholar 

  34. Nanda, S., Kar, K.: Convex fuzzy mapping. Fuzzy Sets Syst. 48, 129–132 (1992)

    Article  Google Scholar 

  35. Nanda, S., Panda, G., Dash, J.K.: A new methodology for crisp equivalent of fuzzy chance constrained programming problem. Fuzzy Optim. Decis. Making 7, 59–74 (2008)

    Article  Google Scholar 

  36. Ojha, A., Das, B., Mondal, S., Maiti, M.: A stochastic discounted multi-objective solid transportation problem for breakable items using analytical hierarchy process. Appl. Math. Model. 34, 2256–2271 (2010a)

    Article  Google Scholar 

  37. Ojha, A., Das, B., Mondal, S., Maiti, M.: A solid transportation problem for an item with fixed charge vechicle cost and price discounted varying charge using genetic algorithm. Appl. Soft Comput. 10, 100–110 (2010b)

    Article  Google Scholar 

  38. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. Aust. J. Math. Anal. Appl. 114(2), 409–422 (1986)

    Article  Google Scholar 

  39. Robers, P., Cooper, L.: A study of the fixed charge transportation problem. Comput. Math. Appl. 2(2), 125–135 (1976)

    Article  Google Scholar 

  40. Saad, O.M., Abbas, S.A.: A parametric study on transportation problem under fuzzy environment. J. Fuzzy Math. 11, 115–124 (2003)

    Google Scholar 

  41. Sadi-Nezhad, S., Damaghani, K.K.: A modified TOPSIS technique in presence of uncertainty and its application to assesment of transportation system. Int. J. Manag. Sci. Eng. Manag. 6(1), 3–13 (2011)

    Google Scholar 

  42. Sakawa, M.: Fuzzy Sets and Interactive Multiobective Optimization. Plenum, New York (1993)

    Book  Google Scholar 

  43. Samanta, B., Roy, T.K.: Multi-objective entropy transportation model with trapezoidal fuzzy number penalities, sources and destination. J. Transp. Eng. 136(6), 419–428 (2005)

    Article  Google Scholar 

  44. Sun, M., Aronson, J.E., Mckeown, P.G., Dennis, D.: A tabu search heuristic procedure for fixed charge transportation problem. Eur. J. Oper. Res. 106, 411–456 (1998)

    Article  Google Scholar 

  45. Tao, Z., Xu, J.: A class of rough multiple objective programming and its application to solid transportation problem. Inf. Sci. 188, 215–235 (2012)

    Article  Google Scholar 

  46. Xie, J., Dong, J.: Heuristic genetic algorithms for general capaciated lot sizing problems. Comput. Math. Appl. 44(1–2), 263–276 (2002)

    Article  Google Scholar 

  47. Xu, J., Yan, F., Li, S.: Vehicle routing optimization with soft time windows in a fuzzy random environment. Transp. Res. E. 47(6), 1075–1091 (2011)

    Google Scholar 

  48. Yang, J., Zhang, M., He, B., Yang, C.: Bi-level programming model and hybrid genetic algorithm for flow interception problem with customer choice. Comput. Math. Appl. 57(11–12), 1985–1994 (2009)

    Article  Google Scholar 

  49. Yang, L., Feng, Y.: A bicriteria solid transportation problem with fixed charge under stochastic environment. Appl. Math. Model. 31, 2668–2683 (2007)

    Article  Google Scholar 

  50. Yang, L., Liu, L.: Fuzzy fixed charge solid transportation problem and algorithm. Appl. Soft Comput. 7, 879–889 (2007)

    Article  Google Scholar 

  51. Wang, G., Wan, Z., Wang, X., Lv, Y.: Genetic algorithm based on simplex method for solving linear quadratic bilevel programming problem. Comput. Math. Appl. 56(10), 2550–2555 (2008)

    Article  Google Scholar 

  52. Wang, X.: Continuous review inventory model with variable lead time in a fuzzy random environment. Expert Syst. Appl. 38, 11715–11721 (2011)

    Article  Google Scholar 

  53. Wen, M., Kang, R.: Some optimal models for facility locationallocation problem with random fuzzy demands. Appl. Soft Comput. 11, 1202–1207 (2011)

    Article  Google Scholar 

  54. Wu, H.C.: Statistical confidence intervals for fuzzy data. Expert Syst. Appl. 36, 2670–2676 (2009)

    Article  Google Scholar 

  55. Zadeh, L.A.: The Concept of Linguistic Variable and Application to Approximate Reasoning. Memorandum ERL-M, 411 Berkeley (1973)

  56. Zadeh, L.A.: Fuzzy set as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravash Kumar Giri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giri, P.K., Maiti, M.K. & Maiti, M. Entropy based solid transportation problems with discounted unit costs under fuzzy random environment. OPSEARCH 51, 479–532 (2014). https://doi.org/10.1007/s12597-013-0155-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-013-0155-0

Keywords

Navigation