Skip to main content
Log in

Performance analysis of highlyefficient lead-free perovskite solar cells: a numerical insight

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Organometallic halide perovskite solar cells (PSCs) are well known for their superior performance, ease of manufacture, and versatility. However, the inclusion of poisonous lead in traditional PSCs has prompted environmental concerns, encouraging research into lead-free alternatives. Despite the potential of lead-free PSCs, their commercial feasibility has been hampered by inefficiencies, demanding rigorous numerical research to discover root causes and optimize power conversion efficiency (PCE). This study focuses on lead-free PSCs designed with Methylammonium Germanium Iodide (MAGeI3) as a perovskite absorbing layer (PAL) and employs the SCAPS-1D modeling technique to exploit PCE. The device emphasizes a MAGeI3-based PSC arrangement with sandwich layers made up of TiO2 as the electron transport material (ETM) and Cu2O (Copper Oxide) as the hole transport material (HTM). The performance of the device is evaluated using a complete study and optimization of many variables including consecutive active layer thickness, impedance characteristics, capacitance-voltage (C-V) behavior, operating temperature, and defect density. The findings show that proposed PSCs attain an ideal PCE of 26.50%, due to considerable improvements in fill factor (FF) of 79.09%, open-circuit voltage (VOC) of 1.221 V, and short-circuit current density (JSC) of 27.45 mAcm− 2. It has been too found that after optimizing several aspects of the suggested structure, the performance metrics show a 90% increase in external quantum efficiency (EQE) a little above the previously reported PSC. This extensive investigation gives significant insights into the elements impacting lead-free PSC performance and paves the road for the creation of more efficient devices. The present work looks into MAGeI3-based PSCs, discovering crucial optimization variables, progressing lead-free solar cell technology, and supporting sustainable energy options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.S. Uddin, M.K. Hossain, M.B. Uddin, G.F. Toki, M. Ouladsmane, M.F. Rubel, R. Pandey, An In-Depth investigation of the combined Optoelectronic and Photovoltaic properties of lead‐free Cs2AgBiBr6 double Perovskite Solar cells using DFT and SCAPS‐1D frameworks. Adv. Electron. Mater. 2300751 (2023)

  2. S. Bouhmaidi, M.B. Uddin, R.K. Pingak, S. Ahmad, M.H.K. Rubel, A. Hakamy, L. Setti, Investigation of heavy thallium perovskites TlGeX3 (X = cl, br and I) for optoelectronic and thermoelectric applications: a DFT study. Mater. Today Commun. 37, 107025 (2023)

    Article  Google Scholar 

  3. S. Bhattarai, R. Pandey, J. Madan, A. Mhamdi, A. Bouazizi, D. Muchahary, D. Gogoi, A. Sharma, T.D. Das, Investigation of carrier transport materials for performance assessment of lead-free perovskite solar cells. IEEE Trans. Electron. Devices. 69, 3217 (2022)

    Article  ADS  Google Scholar 

  4. S. Bhattarai, D. Gogoi, A. Sharma, T.D. Das, Performance enhancement by an embedded microlens array in perovskite solar cells. Indian J. Phys. 97, 3459 (2023)

    Article  ADS  Google Scholar 

  5. S. Bhattarai, A. Sharma, D. Muchahary, D. Gogoi, T.D. Das, Numerical simulation study for efficiency enhancement of doubly graded perovskite solar cell. Opt. Mater. 118, 111285 (2021)

    Article  Google Scholar 

  6. S. Bhattarai, R. Pandey, J. Madan, D. Muchahary, D. Gogoi, A novel graded approach for improving the efficiency of lead-free perovskite solar cells. Sol Energy. 244, 255 (2022)

    Article  ADS  Google Scholar 

  7. S. Bhattarai, A. Mhamdi, I. Hossain, Y. Raoui, R. Pandey, J. Madan, A. Bouazizi, M. Maiti, D. Gogoi, A. Sharma, A detailed review of perovskite solar cells: introduction, working principle, modelling, fabrication techniques, future challenges. Micro Nanostruct. 172, 207450 (2022)

    Article  Google Scholar 

  8. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visiblelight sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  9. S. Hussain, M.I. Khan, W.S. Subhani, G.M. Mustafa, M. Saleem, S.A. Abubshait, H.A. Abubshait, D.I. Saleh, S.F. Mahmoud, Decorating wide band gap CH3NH3PbBr3 perovskite with 4AMP for highly efficient and enhanced open circuit voltage perovskite solar cells. Sol Energy. 230, 501 (2021)

    Article  ADS  Google Scholar 

  10. R. Pandey, R. Chaujar, Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications. J. Photon Energy. 7, 22503 (2017)

    Article  Google Scholar 

  11. M.K. Hossain, G.I. Toki, D.P. Samajdar, M. Mushtaq, M.H.K. Rubel, R. Pandey, H. Bencherif, Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations. ACS Omega. 8, 22466 (2023)

    Article  Google Scholar 

  12. A. Pathania, R. Pandey, J. Madan, R. Sharma, Design and optimization of 26.3% efficient perovskite/FeSi2 monolithic tandem solar cell. J. Mater. Sc : Mater. Electron. 31, 15218 (2020)

    Google Scholar 

  13. M.K. Hossain, A.A. Arnab, D.P. Samajdar, M.H.K. Rubel, M.M. Hossain, M.R. Islam, D.K. Dwivedi, Design insights into La2NiMnO6-based perovskite solar cells employing different charge transport layers: DFT and SCAPS-1D frameworks. Energy Fuels. 37, 13377 (2023)

    Article  Google Scholar 

  14. M.K. Mohammed, A.K. Al-Mousoi, S. Singh, A. Kumar, M.K. Hossain, S.Q. Salih, Z.M. Yaseen, Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer. Opt. Mater. 138, 113702 (2023)

    Article  Google Scholar 

  15. A. Pathania, J. Madan, R. Pandey, R. Sharma, Effect of structural and temperature variations on perovskite/Mg2Si based monolithic tandem solar cell structure. Appl. Phys. A 126, 1 (2020)

    Article  Google Scholar 

  16. D. Gogoi, S. Bhattarai, T.D. Das, Influence of altered parasitic aspects on the device structure for efficient organic solar cells. Pramana. 97, 188 (2023)

    Article  ADS  Google Scholar 

  17. M.K. Hossain, G.I. Toki, J. Madan, R. Pandey, H. Bencherif, M.K. Mohammed, D.P. Samajdar, A comprehensive study of the optimization and comparison of cesium halide perovskite solar cells using ZnO and Cu2FeSnS 4 as charge transport layers. New. J. Chem. 47, 8602 (2023)

    Article  Google Scholar 

  18. D. Gogoi, T.D. Das, Design a highly efficient lead-free organic tin halide perovskite solar cells using nickel oxide as the hole transport layer. Opt. Mater. 143, 114238 (2023)

    Article  Google Scholar 

  19. Y. El Arfaoui, M. Khenfouch, N. Habiballah, HTL-free non-toxic perovskite tandem solar device MAGeI3/FASnI3 with 25.69% efficiency: design and simulation using SCAPS. J. Opt. 1–14 (2024)

  20. D. Gogoi, T.D. Das, The role of a highly optimized approach with superior transparent conductive oxide anode towards efficient organic solar cell. Phys. Scr. 98, 085908 (2023)

    Article  ADS  Google Scholar 

  21. M. Stolterfoht, C.M. Wolff, Y. Amir, A. Paulke, L. Perdigón-Toro, P. Caprioglio, D. Neher, Approaching the fill factor Shockley–queisser limit in stable, dopant-free triple cation perovskite solar cells. Energy Environ. Sci. 10, 1530 (2017)

    Article  Google Scholar 

  22. M.M. Tavakoli, P. Yadav, R. Tavakoli, J. Kong, Surface Engineering of TiO2 ETL for highly efficient and hysteresis- less Planar Perovskite Solar Cell (21.4%) with enhanced Open‐ Circuit Voltage and Stability. Adv. Energy Mater. 8, (2018)

  23. C.-C. Tseng, L.-C. Chen, L.-B. Chang, G.-M. Wu, W.-S. Feng, M.-J. Jeng, D.W. Chen, K.-L. Lee, Cu2O-HTM/SiO2-ETM assisted for synthesis engineering improving efficiency and stability with heterojunction planar perovskite thin-film solar cells. Sol Energy. 204, 270 (2020)

    Article  ADS  Google Scholar 

  24. D. Sarkar, A.K. Mahmud Hasan, M. Mottakin, V. Selvanathan, K. Sobayel, M. Ariful Islam, G. Muhammad, M. Aminuzzaman, M. Shahiduzzaman, K. Sopian, M. Akhtaruzzaman, Lead free efficient perovskite solar cell device optimization and defect study using mg doped CuCrO2 as HTL and WO3 as ETL. Sol Energy. 243, 215 (2022)

    Article  ADS  Google Scholar 

  25. M.K. Hossain, A.A. Arnab, R.C. Das, K.M. Hossain, M.H.K. Rubel, M.F. Rahman, R. Pandey, D.F.T. Combined, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers. RSC Adv. 12, 35002 (2022)

    Article  Google Scholar 

  26. M.M. Haque, S. Mahjabin, S. Khan, M.I. Hossain, G. Muhammad, M. Shahiduzzaman, K. Sopian, M. Akhtaruzzaman, Study on the interface defects of eco-friendly perovskite solar cells. Sol Energy. 247, 96 (2022)

    Article  ADS  Google Scholar 

  27. M.K. Hossain, M.H.K. Rubel, G.I. Toki, I. Alam, M.F. Rahman, H. Bencherif, Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks. ACS Omega. 7, 43210 (2022)

    Article  Google Scholar 

  28. M.K. Otoufi, M. Ranjbar, A. Kermanpur, N. Taghavinia, M. Minbashi, M. Forouzandeh, F. Ebadi, Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: roles of the interfacial layers. Sol Energy. 208, 697 (2020)

    Article  ADS  Google Scholar 

  29. M.H.K. Rubel, M.A. Hossain, M.K. Hossain, K.M. Hossain, A.A. Khatun, M.M. Rahaman, J. Hossain, First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd3B4O2 (B = Ti, V) perovskites. Res. Phys. 42, 105977 (2022)

    Google Scholar 

  30. M.M. Rahaman, K.M. Hossain, M.H.K. Rubel, A.A. Islam, S. Kojima, Alkaline-Earth metal effects on physical properties of ferromagnetic AVO3 (A = ba, Sr, ca, and mg): density functional theory insights. ACS Omega. 7, 20914 (2022)

    Article  Google Scholar 

  31. M.K. Hossain, M.C. Biswas, R.K. Chanda, M.H. Rubel, M.I. Khan, K. Hashizume, A review on experimental and theoretical studies of perovskite barium zirconate proton conductors. Emerg. Mater. 4, 999 (2021)

    Article  Google Scholar 

  32. M.F. Rahman, M.J.A. Habib, M.H. Ali, M.H.K. Rubel, M.R. Islam, A.B. Md Ismail, M.K. Hossain, Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency. AIP Adv. 12, (2022)

  33. M.K. Hossain, D.P. Samajdar, R.C. Das, A.A. Arnab, M.F. Rahman, M.H.K. Rubel, M.K. Mohammed, Design and simulation of Cs2BiAgI6 double perovskite solar cells with different electron transport layers for efficiency enhancement. Energy Fuels. 37, 3957 (2023)

    Article  Google Scholar 

  34. M.K. Hossain, G.I. Toki, I. Alam, R. Pandey, D.P. Samajdar, M.F. Rahman, M.K. Mohammed, Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency. New. J. Chem. 47, 4801 (2023)

    Article  Google Scholar 

  35. D. Gogoi, S. Bhattarai, T.D. Das, A numerical investigation for performance enhancement of organic solar cell using Al-doped zinc oxide anode. Indian J. Phys. 1–13 (2023)

  36. D. Gogoi, T.D. Das, Influence of highly optimized charge carrier mobility and diverse physical features toward efficient organic solar cells. Phys. Scr. 99, 055521 (2024)

    Article  Google Scholar 

  37. M. Wang, W. Wang, B. Ma, W. Shen, L. Liu, K. Cao, S. Chen, W. Huang, Lead-free perovskite materials for solar cells. Nano-Micro Lett. 13, 62 (2021)

    Article  ADS  Google Scholar 

  38. S. Sarker, M.T. Islam, A. Rauf, H. Al Jame, S. Ahsan, M.S. Islam, M.R. Jani, S.S. Nishat, K.M. Shorowordi, S. Ahmed, A simulation based incremental study of stable perovskite-onperovskite tandem solar device utilizing non-toxic tin and germanium perovskite. Mater. Today Commun. 32, 103881 (2022)

    Article  Google Scholar 

  39. A. Hima, N. Lakhdar, Design and simulation of homojunction perovskite CH3NH3GeI3 solar cells. Indian J. Phys. 97, 727 (2023)

    Article  ADS  Google Scholar 

  40. C. Shubham, Raghvendra, Pathak, S.K. Pandey, Design, performance, and defect density analysis of efficient eco-friendly perovskite solar cell. IEEE Trans. Electron. Devices. 67, 2837 (2020)

    Article  ADS  Google Scholar 

  41. S. Bhattarai, T.D. Das, Optimization of carrier transport materials for the performance enhancement of the MAGeI3 based perovskite solar cell. Sol Energy. 217, 200 (2021). [18]

    Article  ADS  Google Scholar 

  42. S.T. Jan, M. Noman, Influence of absorption, energy band alignment, electric field, recombination, layer thickness, doping concentration, temperature, reflection and defect densities on MAGeI3 perovskite solar cells with Kesterite HTLs. Phys. Scr. 97, 125007 (2022). [19]

    Article  ADS  Google Scholar 

  43. A.A. Kanoun, M.B. Kanoun, A.E. Merad, S. Goumri-Said, Toward development of highperformance perovskite solar cells based on CH3NH3GeI3 using computational approach. Sol Energy. 182, 237 (2019)

    Article  ADS  Google Scholar 

  44. M.K. Hossain, M.K. Mohammed, R. Pandey, A.A. Arnab, M.H.K. Rubel, K.M. Hossain, S. Bhattarai, Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells. Energy Fuels. 37, 6078 (2023)

    Article  Google Scholar 

  45. Z. Ahmad, A. Mishra, S.M. Abdulrahim, F. Touati, Electrical equivalent circuit (EEC) based impedance spectroscopy analysis of HTM free perovskite solar cells. J. Electroanal. Chem. 871, 114294 (2020)

    Article  Google Scholar 

  46. E. Knapp, B. Ruhstaller, Analysis of negative capacitance and self-heating in organic semiconductor devices. J. Appl. Phys. 117, (2015)

  47. F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, W. Tress, Origin of apparent lightenhanced and negative capacitance in perovskite solar cells. Nat. Commun. 10, 1574 (2019)

    Article  ADS  Google Scholar 

  48. S.T. Jan, M. Noman, Exploring the potential of MAGeI3 Perovskite cells with Novel Charge Transport Material optimization. Optik 171684 (2024)

  49. V. Srivastava, R.K. Chauhan, P. Lohia, Highly efficient cesium-based halide perovskite solar cell using SCAPS-1D software: theoretical study. J. Opt. 52, 1218 (2023)

    Article  Google Scholar 

  50. S. Yadav, P. Lohia, A. Sahu, Enhanced performance of double perovskite solar cell using WO3 as an electron transport material. J. Opt. 52, 776 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The author Dipankar Gogoi would like to convey his heartfelt thanks to the National Institute of Technology Arunachal Pradesh, Jote, India, for supporting his research work. This work was funded by the Researchers Supporting Project Number (RSP2024R267) King Saud University, Riyadh, Saudi Arabia. The authors wish to acknowledge Dr. Marc Burgelman and his collaborators from the University of Gent in Belgium for having provided the accessible SCAPS-1D computational software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khalid Hossain.

Ethics declarations

Competing Interests

Authors declare that there are no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, D., Hossain, M.K., Das, T.D. et al. Performance analysis of highlyefficient lead-free perovskite solar cells: a numerical insight. J Opt (2024). https://doi.org/10.1007/s12596-024-01880-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01880-4

Keywords

Navigation