Skip to main content
Log in

A method of determining distance to moon and its zenith angle from a pair of moon-images

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An accessible low cost method is proposed using the pair of images of the full Moon at estimated positions of horizon and the zenith to an observer to find the distance of the Moon from the Earth and its zenith angle from an observer on Earth without using any other sophisticated technologies. The proposed method utilizes the phenomenon of the flattening of Moon at horizon and uses the pixel difference of Moon at two perpendicular directions and does not require any other information of capturing device and procedures like camera related parameters, camera angles, hour angle or any other technical devices. Further to validate the results the obtained value of zenith angle is used to find the atmospheric refractive index of the Earth. As the proposed method only requires the pixel difference of the images of the moon at two positions (horizon and zenith), it can also be applied to the open source images to obtain the distance to moon, unknown position of the Moon in terms of zenith angle to the user and the refractive index of atmosphere at a given day and location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.C. Kak, Astronomy of the Satapatha Brahmana. Indian J. Hist. Sci. 28(1), 15–34 (1993)

    MathSciNet  Google Scholar 

  2. S.M.R. Ansari, Aryabhatta I. His Life and his Contributions. Bull. Astron. Soc. India 5, 10–18 (1977)

    ADS  Google Scholar 

  3. A. Helden, Measuring the universe: cosmic dimensions from Aristarchus to Halley (University of Chicago Press, 2010)

    Google Scholar 

  4. T. Heath, Aristarchus of Samos, the Ancient Copernicus: A history of greek astronomy to Aristarchus, together with Aristarchus’s treatise on the sizes and distances of the sun and moon (Cambridge University Press, 2013)

    Book  Google Scholar 

  5. S. Webb, Measuring the universe: the cosmological distance ladder (Springer, London, 1999), pp. 27–35. https://link.springer.com/book/9781852331061

  6. J.L. Spradley, Ten Lunar Legacies: Importance of the Moon for Life on Earth. Perspect. Sci. Christ. Faith 62(4), 267–275 (2010)

    Google Scholar 

  7. G. Ryder, Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J. Geophys. Res.: Planets 107(E4), 6–1 (2002)

    Article  Google Scholar 

  8. J.O. Dickey et al., Lunar laser ranging: A continuing legacy of the Apollo program. Science 265(5171), 482–490 (1994)

    Article  ADS  Google Scholar 

  9. J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 26 261101 (2004)

    Article  Google Scholar 

  10. T.W. Murphy Jr., Lunar laser ranging: the millimeter challenge. Rep. Prog. Phys. 76(7), 076901 (2013)

    Article  ADS  Google Scholar 

  11. A. Katz, M. Franco, Targeting the Moon. IEEE Microwave Mag. 12(4), 62–73 (2011)

    Article  Google Scholar 

  12. D.H. Menzel, Radar and Astronomy. Astron. Soc. Pac. Leafl. 5(217), 135–144 (1947)

    ADS  Google Scholar 

  13. C.A. Wood, Scientific Knowledge of the Moon, 1609 to 1969. Geosciences 9(1), 5–17 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Stroobant, The diameter of the Moon. Obs. 17, 169–173 (1894)

    ADS  Google Scholar 

  15. Y. Isabelle, 10 Things: What We Learn About Earth by Studying the Moon, (2019). https://solarsystem.nasa.gov/news/812/10-things-what-we-learn-about-earth-by-studying-the-moon (accessed on 3rd May 2023).

  16. E.R. Cowley, A classroom exercise to determine the Earth-Moon distance. Am. J. Phys. 57(4), 351–352 (1989)

    Article  ADS  Google Scholar 

  17. D.H. Bruning, Determining the Earth-Moon distance. Am. J. Phys. 59, 850–850 (1991)

    Article  ADS  Google Scholar 

  18. L. Girlanda, Echoes from the Moon. Am. J. Phys. 77(9), 854–857 (2009)

    Article  ADS  Google Scholar 

  19. P. Núñez, S.E. Calderón, S. Gil, Midiendo el sistema solar en el aula. Lat. Am. J. Phys. Educ. 3(2), 229–238 (2009)

    Google Scholar 

  20. L.J. Pellizza, M.G. Mayochi, L.C. Brazzano, An experiment to measure the instantaneous distance to the Moon. Am. J. Phys. 82(4), 311–316 (2014)

    Article  ADS  Google Scholar 

  21. B. Oostra, Measuring the Moon’s orbit using a hand-held camera. Am. J. Phys. 82(4), 317–321 (2014)

    Article  ADS  Google Scholar 

  22. E.J. Sartoon, Diameter of the moon. Phys. Teach. 18, 137–138 (1980)

    Article  ADS  Google Scholar 

  23. B. Zohuri, Directed Energy Weapons Physics of High Energy lasers (Springer International Publishing Switzerland, Switzerland, 2016), pp. 379–414

    Book  Google Scholar 

  24. P.D. Noerdlinger, Atmospheric refraction effects in Earth remote sensing. ISPRS J. Photogramm. Remote. Sens. 54, 360–373 (1999)

    Article  ADS  Google Scholar 

  25. H.E. Bussey, G. Birnbaum, Measurement in variations in atmospheric refractive index with an airborne microwave refractometer. J. Res. Natl. Bur. Stand. 51(4), 171–178 (1953)

    Article  Google Scholar 

  26. K.P. Gaikovich, Ground based Doppler radio refractometry of the atmosphere. Radiofizika 35(3–4), 211–219 (1992)

    ADS  Google Scholar 

  27. M.L. Eichkoff, J.L. Hall, Real-time precision refractometry new approaches. Appl. Opt. 36(6), 1223–1234 (1997)

    Article  ADS  Google Scholar 

  28. M. Vermeer, P. Rönnholm, On the atmospheric refraction in aerial photogrammetry. Photogramm. J. Finland 26(2), 1–10 (2019)

    Article  Google Scholar 

  29. S. Bertram, Atmospheric refraction. Photogramm. Eng. 32(1), 76–84 (1966)

    Google Scholar 

  30. U. Beisl, U. Tempelmanna, Estimation of the atmospheric refraction effect in airborne images using radiosonde data, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1, 281 (2016). https://doi.org/10.5194/isprs-archives-XLI-B1-281-2016

  31. J. Wang, W. Sun, Measuring the focal length of a camera lens in a smart-phone with a ruler. Phys. Teach. 57, 54 (2019)

    Article  ADS  Google Scholar 

  32. P.J.A. Alphonse, K.V. Sriharsha, Depth Perception In Single Rgb Camera System Using Lens Aperture and Object Size: A Geometrical Approach For Depth Estimation. SN Appl. Sci. 3, 595–610 (2021)

    Article  Google Scholar 

  33. A. Girot, N.-A. Goy, A. Vilquin, U. Delabre, Studying Ray Optics with a Smartphone. Phys. Teach. 58, 133 (2020)

    Article  ADS  Google Scholar 

  34. F. Seron, D. Gutierrez, G. Gutierrez, and E. Cerezo. Visualizing sunsets through inhomogeneous atmospheres. Comput. Graph. Int. 349–356 (2004). https://www.doi.org/10.1109/CGI.2004.1309232

  35. Z. Ne’da, S. Volka’n-Kacso, Flatness of the setting Sun. Am. Assoc. Phys. Teach. 71(4), 379–385 (2003)

    ADS  Google Scholar 

  36. T. Sæmundsson, Astronomical Refraction. Sky Telescope 72(1), 70 (1986)

    ADS  Google Scholar 

  37. D. R. Williams, Moon Fact Sheet, NASA Space Science Data Coordinated Archive. https://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html (accessed on 3rd May 2023)

  38. J.-C. Breitler, D. Djerabb, S. Leran, L. Toniutti, C. Guittin, D. Severac, M. Pratlong, A. Dereeper, H. Etienne, B. Bertrand, Full moonlight-induced circadian clock entrainment in Coffea Arabica. BMC Plant Biol. 20(24), 1–11 (2020)

    Google Scholar 

  39. P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1556–1573 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Roy.

Ethics declarations

Competing interests

The author(s) declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S.K., Chakraborty, S. A method of determining distance to moon and its zenith angle from a pair of moon-images. J Opt (2024). https://doi.org/10.1007/s12596-024-01875-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01875-1

Keywords

Navigation