Skip to main content
Log in

Spectroscopic studies of Eu-Doped BaF2 single-crystal

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Spectroscopic studies of Eu-doped BaF2 single crystals were carried out in view of novel possible applications in laser technology. Single-crystal X-ray diffraction confirmed that the Eu: BaF2 single crystal process FCC crystal structure with Fm-3m space group. The vibrational mode of the Eu: BaF2 crystal was observed at 245 cm−1. Five absorption lines are observed at 398, 405, 415,462, and 471 nm, corresponding to the 7F0 → 5L6, 7F1 → 5L6, 7F1 → 5D3, 7F0 → 5D2, and 7F1 → 5D2 transitions, respectively. The 7F0 → 5L6 transition has a maximum absorbance and oscillator strength of ~ 2.03 × 10–6. The fluorescence spectra showed four emission lines at 588, 618, 652, and 699 nm. These lines correspond to 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3, and 5D0 → 7F4 transitions, respectively. Judd–Ofelt parameters were calculated from the fluorescence spectra using JOES software. Eu is localized at a highly symmetric site, as the JO intensity parameter Ω2 (0.54 × 10−20cm2) is less than Ω4 (0.99 × 10–20 cm2). The emission cross-section values, branching ratio, lifetime, and radiation transition probability have been computed using the JOES software. The 7D0 → 7F1 transition has a higher lifetime, branching ratio, and emission cross-section values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. A. Bitam, S. Khiari, M. Diaf, H. Boubekri,E. Boulma, C. Bensalem, L. Guerbous, J.P., J. Opt. Mater. (2018). https://doi.org/10.1016/j.optmat.2018.05.034

  2. D. Zhao, X. Qiao, X. Fan, M. Wang, J. Phys. B: Condensed Matter. (2007). https://doi.org/10.1016/j.physb.2006.12.007

  3. A.A. Kaminskii, L. Bohatý, P. Becker, H.J. Eichler, H. Rhee, Laser Phys. Lett. (2007). https://doi.org/10.1002/lapl.200710038

    Article  Google Scholar 

  4. Y. Yang, L. Zhang, S. Li, S. Zhang, Y. Zhang, J. Infrared Phys. Technol. (2020). https://doi.org/10.1016/j.infrared.2020.103230

  5. S. Anghel, S. Golbert, A. Meijerink, A.-V. Mudring, J. Lumin. (2017). https://doi.org/10.1016/j.jlumin.2016.10.007

  6. G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, J. Solid State Chem. (2006). https://doi.org/10.1016/j.jssc.2005.12.027

  7. I. Nicoara, M. Stef, G. Buse, A. Racu, J. Cryst. Growth (2020). https://doi.org/10.1016/j.jcrysgro.2020.125817

  8. M. Mujaji, J. Burrows, R.A. Jackso, J. Lumin. (2014). https://doi.org/10.1016/j.jlumin.2014.02.011

  9. P. Camy, J.L. Doualan, A. Benayad, M. von Edlinger, V. Ménard, R. Moncorgé, J. Appl. Phys. B (2007). https://doi.org/10.1007/s00340-007-2829-x

  10. B. Wiggins, C. Richards, A. Volpi, D. Williams, M. Iliev, M.P. Hehlen, J. Cryst. Growth (2020). https://doi.org/10.1016/j.jcrysgro.2019.125431

    Article  Google Scholar 

  11. H. Boubekri, M. Diaf, L. Guerbous, J.P. Jouart, Opt. Mater. 78 (2018). https://doi.org/10.1016/j.optmat.2018.01.047

  12. J.P. Jouart, C. Bissieux, G. Mary, J. Lumin. (1987). https://doi.org/10.1016/0022-2313(87)90189-X

  13. G.M. Sheldrick, J. Acta Cryst. (2015). https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  14. L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. ActaCryst. (2015). https://doi.org/10.1107/S2053273314022207

  15. O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, J. Appl. Cryst. (2009). https://doi.org/10.1107/S0021889808042726

  16. A.S. Radtke, G.E. Brown, Frankdicksonite. Am. Mineral. 59(9–10) (1974)

  17. A.A. Kaminskii, H. Rhee, H.J. Eichler, L. Bohatý, P. Becker, K. Takaichi, Laser Phys. Lett. (2008). https://doi.org/10.1002/lapl.200710130

    Article  Google Scholar 

  18. J.A. Harrington, R.T. Harley, C.T. Walker, J. Solid State Commun. (1971). https://doi.org/10.1016/0038-1098(71)90245-6

    Article  Google Scholar 

  19. D. Saleta Reiga, B. Grauela, V.A. Konyushkin, A.N. Nakladov, P.P. Fedorov, D. Busko, I.A. Howard, B.S. Richards, U. Resch-Genger, S.V. Kuznetsov, A. Turshatov, C. Würth, J. Mater. Chem. C. 8 (2020)

  20. K. Maheshvaran, P.K. Veeran, K. Marimuthu, J. Solid State Sci. (2013). https://doi.org/10.1016/j.solidstatesciences.2012.11.013

  21. W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. (1968). https://doi.org/10.1063/1.1669892

    Article  Google Scholar 

  22. W.T. Carnall, P.R. Fields, B.G. Wybourne, J. Chem. Phys. (1965). https://doi.org/10.1063/1.1695840

    Article  Google Scholar 

  23. E. Cantelar, J.A. Sanz-Garcia, A. Sanz-Martin, J.E.M. Santiuste, F. Cusso, J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152194

    Article  Google Scholar 

  24. R. Reisfeld, E. Zigansky, M. Gaft, Mol. Phys. (2007). https://doi.org/10.1080/00268970410001728609

    Article  Google Scholar 

  25. K. Binnemans, Coord. Chem. Rev. (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  Google Scholar 

  26. W. Wang, X. Fan, D. Pi, M. Wang, Solid State Commun. (2005). https://doi.org/10.1016/j.ssc.2005.01.014

  27. R. Rakov, R.B. Guimaraes, W. Lozano, G.S. Maciel, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4816623

    Article  Google Scholar 

  28. J. Kaewkhao, K. Boonin, P. Yasaka, H.J. Kim, Mater. Res. Bull. (2015). https://doi.org/10.1016/j.materresbull.2015.07.002

    Article  Google Scholar 

  29. L. Mukhopadhyay, V.K. Rai, New J. Chem. 42 (2018). https://doi.org/10.1039/C8NJ02320D

  30. R.W. Liu, M.J. Chen, X.R. Zhu, Y.Y. Zhou, F.M. Zeng, Z.M. Su, J. Lumin. (2020). https://doi.org/10.1016/j.jlumin.2020.117378

    Article  Google Scholar 

  31. B.R. Judd, Phys. Rev. (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  Google Scholar 

  32. G.S. Ofelt, Journal of Chemical (1962). https://doi.org/10.1063/1.1701366

    Article  Google Scholar 

  33. R. Shukla, S.K. Gupta, V. Grover, V. Natarajan, K. Tyagi Dalton Trans. 44 (2015). https://doi.org/10.1039/C4DT02717E

  34. M. Ferhi, C. Bouzidi, K. Horchani-Naifer, H. Elhouichet, M. Ferid, J. Lumin. 157 (2015). https://doi.org/10.1016/j.jlumin.2014.08.017

  35. I. Ahemen, O. Meludu, F.B. Dejene, B. Viana, Opt. Mater. (2016). https://doi.org/10.1016/j.optmat.2016.07.036

    Article  Google Scholar 

  36. I. Ahemen, F.B. Dejene, R.E. Kroon, H.C. Swart, Opt. Mater. (2017). https://doi.org/10.1016/j.optmat.2017.03.029

    Article  Google Scholar 

  37. A. Kumari, L. Mukhopadhyay, V.K. Rai, New J. Chem. 43 (2019)

  38. Y. Nageno, H. Takebe, K. Morinaga, T. Izumitani, J. Non-Cryst. Solids 169 (1994).https://doi.org/10.1016/0022-3093(94)90324-7

  39. J.C. Batista, P.C. de Sousa Filho, O.A. Serra, Dalton Trans. (2012). https://doi.org/10.1039/C2DT30380A

  40. M. Ferhi, C. Bouzidi, K. Horchani-Naifer, H. Elhouichet, M. Ferid, J. Lumin. 157, 21–27 (2015). https://doi.org/10.1016/j.jlumin.2014.08.017

    Article  Google Scholar 

  41. G. Ramakrishna, H. Nagabhushana, B. Daruka Prasad, Y.S. Vidya, S.C. Sharma, K.S. Anantharaju, S.C. Prashantha, N. Choudhary, J. Lumin. 181, 153–163 (2017). https://doi.org/10.1016/j.jlumin.2016.08.050.

  42. B. Verma, R.N. Baghel, D.P. Bisen, N. Brahme, V. Jena, Opt. Mater. 118 (2021). https://doi.org/10.1016/j.optmat.2021.111196

  43. A. Ćirić, S. Stojadinović, M. Sekulić, M.D. Dramićanin, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2018.09.048

    Article  Google Scholar 

  44. P. Rekha Rani, M. Venkateswarlu, Sk Mahamuda, K. Swapna, Nisha Deopa, A.S. Rao, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.02.088

  45. X. Geng, Y. Xie, X.Y. Ma, Y.Y. Liu, J.M. Luo, J.X. Wang, R.J. Yu, B. Deng, W.M. Zhou, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156249

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Subhash Chandra Sahoo, Department of Chemistry, Punjab University Chandigarh for providing facilities for Single Crystal XRD measurements and Material Research Centre, Malaviya National Institute of Technology (MNIT), Jaipur for measurement photoluminescence and Central Instrumentation Lab (CIL), Guru Jambheshwar University of Science & Technolgy, Hisar for Raman spectra or UV- Visible spectrum.

Funding

No external funding was involved in the present research.

Author information

Authors and Affiliations

Authors

Contributions

RK: conceptualization, investigation, methodology, formal analysis, writing—original draft. DJ: conceptualization, methodology, validation, writing—review and editing, supervision.

Corresponding author

Correspondence to David Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or per sonal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Joseph, D. Spectroscopic studies of Eu-Doped BaF2 single-crystal. J Opt (2024). https://doi.org/10.1007/s12596-024-01838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01838-6

Keywords

Navigation