Skip to main content
Log in

Effect of annealing process on the physical properties of ZnO nanorods and their performances as photodetectors

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This study examines the impact of thermal annealing on ZnO nanorods produced by vapour phase transport. Nanorods were annealed at temperatures of 300, 500, and 700 °C. It has been demonstrated through X-ray diffraction that the annealing process led to an increase in crystalline size from 34 to 51 nm, indicating improved crystallinity. The optical bandgap decreased from 3.28 to 3.22 eV as a result of defect minimization during annealing. Due to increased crystallinity and fewer defects, annealing increased the dark conductivity from 0.8 to 2 S/cm, as shown by electrical experiments. After annealing, the photosensitivity increased from 10 to 35 and the responsivity rose from 0.18 to 0.48 A/W. The quantitative results demonstrate that annealing modifies the physical properties of ZnO nanorods and improves their photodetection capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Xia et al., One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15(5), 353–389 (2003)

    Article  Google Scholar 

  2. H. Jiangtao, T.W. Odom, C.M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Am. Chem. Soc. 32(5), 435–445 (1999)

    Google Scholar 

  3. R.A. Ismail, B.G. Rasheed, E.T. Salm, M. Al-Hadethy, Transparent and conducting ZnO films prepared by reactive pulsed laser deposition. J. Mater. Sci.: Mater. Electron. 18(4), 397–400 (2007). https://doi.org/10.1007/s10854-006-9046-y

    Article  Google Scholar 

  4. N. Hassan, M. Fakhri, E. Salim, Physical properties of pure gold nanoparticles and gold doped ZnO nanoparticles using laser ablation in liquid for sensor applications. Eng. Technol. J. 40(2), 422–427 (2022)

    Article  Google Scholar 

  5. G.S. Jaber, K.S. Khashan, M.J. Abbas, Preparation ZnO nanoparticles with different concentration by laser ablation in liquid. Eng. Technol. J. 39(1B), 197–202 (2021). https://doi.org/10.30684/etj.v39i1B.1880

    Article  Google Scholar 

  6. E.T. Salim, M.A. Fakhri, H. Hassen, Metal oxide nanoparticles suspension for optoelectronic devises fabrication. Int. J. Nanoelectron. Mater. 6(2), 121–128 (2013)

    Google Scholar 

  7. M.-Y. Han, J.-H. Jou, Determination of the mechanical properties of r.f.-magnetron-sputtered zinc oxide thin films on substrates. Thin Solid Films 260(1), 58–64 (1995)

    Article  ADS  Google Scholar 

  8. A. Alexandrov et al., Al-, Ga-, Mg-, or Li-doped zinc oxide nanoparticles as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 10(1), 7496 (2020)

    Article  ADS  Google Scholar 

  9. E.T. Salem, R.A. Ismail, M.A. Fakhry, Y. Yusof, Reactive PLD of ZnO thin film for optoelectronic application. Int. J. Nanoelectron. Mater. 9(2), 111–122 (2016)

    Google Scholar 

  10. L. Li, C. Hu, G. Shen, Low-dimensional nanostructure based flexible photodetectors: device configuration, functional design, integration, and applications. Accounts Mater. Res. 2(10), 954–965 (2021)

    Article  Google Scholar 

  11. K. Pradeev Raj et al., Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13, 1–13 (2018)

    Article  Google Scholar 

  12. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, Simulation, fabrication and validation of surface acoustic wave layered sensor based on ZnO/IDT/128° YX LiNBO3. Int. J. Appl. Eng. Res. 11(15), 8785–8790 (2016)

    Google Scholar 

  13. Q.C. Bui et al., Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response. J. Alloy. Compd. 870, 159512 (2021)

    Article  Google Scholar 

  14. J. Singh et al., Influence of different milling media on structural, morphological and optical properties of the ZnO nanoparticles synthesized by ball milling process. Mater. Sci. Semicond. Process. 98, 29–38 (2019)

    Article  Google Scholar 

  15. Z.T. Salim, U. Hashim, M.KMd. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bull. 86, 215–219 (2017). https://doi.org/10.1016/j.materresbull.2016.11.015

    Article  Google Scholar 

  16. N.A. Alshehri et al., Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. J. Saudi Chem. Soc. 22(5), 538–545 (2018)

    Article  Google Scholar 

  17. A. Henni et al., Synthesis of graphene–ZnO nanocomposites by a one-step electrochemical deposition for efficient photocatalytic degradation of organic pollutant. Solid State Sci. 98, 106039 (2019)

    Article  Google Scholar 

  18. Z.T. Salim, U. Hashim, M.KMd. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female Aedes mosquito using surface acoustic wave technology: early prevention of dengue fever. Microelectron. Eng. 179, 83–90 (2017). https://doi.org/10.1016/j.mee.2017.04.016

    Article  Google Scholar 

  19. V. Parihar, M. Raja, R. Paulose, A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev. Adv. Mater. Sci. 53(2), 119–130 (2018)

    Article  Google Scholar 

  20. A.T. Le, M. Ahmadipour, S.-Y. Pung, A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J. Alloy. Compd. 844, 156172 (2020)

    Article  Google Scholar 

  21. H.H. Hassen, E.T. Salim, J.M. Taha, R.O. Mahdi, N.H. Numan, F.G. Khalid, M.A. Fakhri, Fourier transform infrared spectroscopy and photo luminance results for Zno NPs prepared at different preparation condition using LP-PLA technique. Int. J. Nanoelectron. Mater. 11, 65–72 (2018)

    Google Scholar 

  22. A.H. Al-Hamdani et al., Impact of PMMA/ZnO nanocomposite on the polychromatic performance of contact lens. Pak. J. Engg. Appl. Sci. 31, 86–93 (2022)

    Google Scholar 

  23. C. Bao et al., High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 30(38), 1803422 (2018)

    Article  Google Scholar 

  24. A.S. Ibraheam, J.M. Rzaij, M.A. Fakhri, A.W. Abdulwahhab, Structural, optical and electrical investigations of Al:ZnO nanostructures as UV photodetector synthesized by spray pyrolysis technique. Mater. Res. Express 6(5), 055916 (2019)

    Article  ADS  Google Scholar 

  25. M.A. Iqbal et al., Technological evolution of image sensing designed by nanostructured materials. ACS Mater. Lett. 5(4), 1027–1060 (2023)

    Article  Google Scholar 

  26. Z. Li, T. Yan, X. Fang, Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 8, 587–603 (2023)

    Article  ADS  Google Scholar 

  27. E.T. Salim, A.I. Hassan, S.A. Naaes, Effect of gate dielectric thicknesses on MOS photodiode performance and electrical properties. Mater. Res. Express 6(8), 086416 (2019). https://doi.org/10.1088/2053-1591/ab1bc2

    Article  ADS  Google Scholar 

  28. A. Wadsworth et al., The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 32(38), 2001763 (2020)

    Article  Google Scholar 

  29. H.D. Cho, D.Y. Kim, J.-K. Lee, ZnO nanorod/graphene hybrid-structures formed on Cu Sheet by self-catalyzed vapor-phase transport synthesis. Nanomaterials 11(2), 450 (2021)

    Article  Google Scholar 

  30. B.A. Badr, N.H. Numan, F.G. Khalid, M.A. Fakhri, A.W. Abdulwahhab, Effetcts of substrate temperatures on optical properties and constants of ZnO prepared by PLD. J. Ovonic Res. 15(2), 127–133 (2019)

    Google Scholar 

  31. Z.H. Azmi et al., Effect of seed layer on the growth of zinc oxide nanowires by chemical bath deposition method. Coatings 12(4), 474 (2022)

    Article  Google Scholar 

  32. Y.-Y. Noh et al., High-photosensitivity p-channel organic phototransistors based on a biphenyl end-capped fused bithiophene oligomer. Appl. Phys. Lett. 86(4), 043501 (2005)

    Article  ADS  Google Scholar 

  33. N.K. Hassan, M.A. Fakhri, A.W. Abdulwahhab, U. Hashim, Preparation of gold nanoparticles doped zinc oxide using reactive pulsed laser ablation in liquid. Key Eng. Mater. 911, 65–76 (2022)

    Article  Google Scholar 

  34. A.D. Faisal, W.K. Khalef, E.T. Salim, F.H. Alsultany, M.H.A. Wahid, Conductivity modification of ZnO NRs films via gold coating for temperature sensor application. Key Eng. Mater. 936, 105–114 (2022). https://doi.org/10.4028/p-25h5n1

    Article  Google Scholar 

  35. B.A. Badr, Q.Q. Mohammed, N.H. Numan, M.A. Fakhri, A.W. Abdul Wahhab, Substrate temperature effects on optical properties and constants of ZnO. Int. J. Nanoelectron. Mater. 12(3), 283–290 (2019)

    Google Scholar 

  36. A. Rogalski et al., Ultraviolet photodetectors: from photocathodes to low-dimensional solids. Sensors 23(9), 4452 (2023)

    Article  ADS  Google Scholar 

  37. M.T. Awayiz, E.T. Salim, Silver oxide nanoparticle, effect of chemical interaction temperatures on structural properties and surface roughness. AIP Conf. Proc. 2213(1), 020247 (2020)

    Article  Google Scholar 

  38. N.K. Hassan, F.G. Khalid, A.A. Ekshayesh, O.S. Dahham, M.M. Hussein, Optical investigations of gold nano rods and gold nano rods doped with ZnO nanoparticles for optoelectronic applications. J. Optics (India) (2023). https://doi.org/10.1007/s12596-023-01120-1

    Article  Google Scholar 

  39. A.L. Abed, W.K. Khalef, E.T. Salim, Synthesis, characterization and optoelectronic device application of ZnO nano structure. J. Phys: Conf. Ser. 1795(1), 012031 (2021)

    Google Scholar 

  40. A.D. Faisal, R.A. Ismail, W.K. Khalef, E.T. Salim, Synthesis of ZnO nanorods on a silicon substrate via hydrothermal route for optoelectronic applications. Opt. Quant. Electron. 52, 1–12 (2020)

    Article  Google Scholar 

  41. K.A. Abdulkareem, S.M. Kadhim, S.B. Ali, Effect of laser energy on the morphology and electrical properties of Fe3O4 thin films deposited by PLD. AIP Conf. Proc. 2876, 050003 (2023)

    Article  Google Scholar 

  42. E.T. Salim, Rapid thermal oxidation for silicon nanocrystal based solar cell. Int. J. Nanoelectron. Mater. 5(2), 95–100 (2012)

    Google Scholar 

  43. K.A. Abdulkareem, S.B. Ali, S.M. Kadhim, Preparation and characterization of Fe3O4 nanoparticles for nitrogen dioxide sensing. AIP Conf Proc 2820, 060001 (2023)

    Article  Google Scholar 

  44. D. Aryanto, E. Hastuti, M. Taspika, et al., Characteristics and photocatalytic activity of highly c-axis-oriented ZnO thin films. J Sol-Gel Sci Technol 96, 226–235 (2020). https://doi.org/10.1007/s10971-020-05361-5

    Article  Google Scholar 

  45. R. Rusdi, A.A. Rahman, N.S. Mohamed, N. Kamarudin, N. Kamarulzaman, Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures. Powder Technol. 210(1), 18–22 (2011)

    Article  Google Scholar 

  46. J.M. Taha, H.N. Azeez, R.A. Basheer, M.A. Fakhri, A.W. Abdulwahab, Effects of oxygen pressure on the structural and morphological properties of ZnO prepared by RPLD. AIP Conf. Proc. 2213(1), 020238 (2020)

    Article  Google Scholar 

  47. K. Davis, R. Yarbrough, M. Froeschle, J. Whitea, H. Rathnayake, Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. SC Adv. 9, 14638–14648 (2019)

    Google Scholar 

  48. Q.Q. Mohammed, B.A. Badr, A.M. Banoosh, M.A. Fakhri, A.W. Abdulwahab, Oxygen pressure effects on optical properties of ZnO prepared by reactive puled laser deposition. AIP Conf. Proc. 2213(1), 020237 (2020)

    Article  Google Scholar 

  49. R. Idiawati, N. Mufti, A. Taufiq, H. Wisodo, I.K.R. Laila, A. Fuad, Sunaryono, Effect of growth time on the characteristics of ZnO nanorods. IOP Conf. Ser. Mater. Sci. Eng. 202, 012050 (2017). https://doi.org/10.1088/1757-899X/202/1/012050

    Article  Google Scholar 

  50. O.A. Abdulrazzaq, E.T. Saleem, Inexpensive near-IR photodetector. Turk. J. Phys. 30, 35–39 (2006)

    Google Scholar 

  51. A.F. Abdulrahman, N.M. Abd-Alghafour, Synthesis and characterization of ZnO nanoflowers by using simple spray pyrolysis technique. Solid-State Electron. 189, 108225 (2022)

    Article  Google Scholar 

  52. T. Tharsika et al., Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis. Front. Mater. 6, 122 (2019)

    Article  ADS  Google Scholar 

  53. Tatarchuk, T., et al., Photocatalysis: activity of nanomaterials. Nanotechnology in environmental science, Book Editor(s):Chaudhery Mustansar Hussain, Ajay Kumar Mishra 209–292 (2018). https://doi.org/10.1002/9783527808854.ch8

  54. S. He et al., Current state-of-the-art in the interface/surface modification of thermoelectric materials. Adv. Energy Mater. 11(37), 2101877 (2021)

    Article  Google Scholar 

  55. S. Jafari, M. Taheri, Thermal annealing influences on the photoresponse of zinc oxide nanoparticle films. J. Electron. Mater. 51(5), 2564–2575 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Technology-Iraq for the logistic support this work.

Funding

No fund has been received for this research study.

Author information

Authors and Affiliations

Authors

Contributions

S.B. Ali, and M. A. Fakhri, Subash C.B. Gopinath. S.B. Ali, M. A. Fakhri, and S. C.B. Gopinath conceived of the presented idea. S.B. Ali, M. A. Fakhri, and S. C.B. Gopinath conducted the experiments. S.B. Ali, and M. A. Fakhri, and S. C.B. Gopinath edited the English language. All authors discussed the results and contributed equally to the final manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding authors

Correspondence to Shams B. Ali or Makram A. Fakhri.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.B., Fakhri, M.A. & Gopinath, S.C.B. Effect of annealing process on the physical properties of ZnO nanorods and their performances as photodetectors. J Opt (2024). https://doi.org/10.1007/s12596-024-01789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01789-y

Keywords

Navigation