Skip to main content
Log in

Determination of the structural and optoelectronic properties of InTe cubic monochalcogenide using the WIEN2k code for its application in photovoltaics

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The present study aims to investigate the structural and optoelectronic properties of the InTe cubic monochalcogenide for its application in the field of photovoltaics as a solar reflector, owing to its high optical reflectivity in the visible and ultraviolet range. We focused on this material due to its limited exploration in the literature. These studies were conducted using density functional theory (DFT), employing the WIEN2k software and the full-potential linearized augmented plane wave (FP-LAPW) method. The Local Density Approximation (LDA) was used as an approximation for considering the electron exchange–correlation energy. We optimized the volume to obtain the optimized cell structure based on the minimum energy criterion, which will be used in subsequent calculations. The calculated structural parameters closely align with experimental values. The band structure and density of states (DOS) calculations indicate that the InTe cubic monochalcogenide is metallic, with a total density (TDOS) at the Fermi level of approximately 1.2 states/eV. Optical properties were also calculated for radiations up to 14 eV. The results suggest that this material could be employed as an efficient solar reflector to mitigate heating effects from solar radiation, thereby improving the efficiency of photovoltaic installations through the judicious use of InTe reflective material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study have been included in this article.

References

  1. S. Misra et al., Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performance. J. Mater. Chem. C 9(15), 5250–5260 (2021). https://doi.org/10.1039/D1TC00876E

    Article  Google Scholar 

  2. L. Zhou, S. Yan, T. Lu, Y. Shi, J. Wang, F. Yang, Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties. J. Solid State Chem. 211, 75–80 (2014). https://doi.org/10.1016/j.jssc.2013.11.033

    Article  ADS  Google Scholar 

  3. M. Zapata-Torres, J.L. Peña, Y.P. Mascarenhas, R. Castro-Rodríguez, M. Meléndez-Lira, O. Calzadilla, Grown of InTe films by close spaced vapor transport. Superf. y vacío 13, 69–71 (2001)

    Google Scholar 

  4. J.-J. Wang, F.-F. Cao, L. Jiang, Y.-G. Guo, W.-P. Hu, L.-J. Wan, High performance photodetectors of individual InSe single crystalline nanowire. J. Am. Chem. Soc. 131(43), 15602–15603 (2009). https://doi.org/10.1021/ja9072386

    Article  Google Scholar 

  5. V. Rajaji et al., Pressure induced band inversion, electronic and structural phase transitions in InTe: a combined experimental and theoretical study. Phys. Rev. B 97(15), 155158 (2018). https://doi.org/10.1103/PhysRevB.97.155158

    Article  ADS  Google Scholar 

  6. T. Chattopadhyay, R.P. Santandrea, H.G. Von Schnering, Temperature and pressure dependence of the crystal structure of InTe: a new high pressure phase of InTe. J. Phys. Chem. Solids 46(3), 351–356 (1985). https://doi.org/10.1016/0022-3697(85)90178-7

    Article  ADS  Google Scholar 

  7. M.K. Jana, K. Pal, U.V. Waghmare, K. Biswas, The origin of ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling. Angew. Chem. Int. Ed. 55(27), 7792–7796 (2016). https://doi.org/10.1002/anie.201511737

    Article  Google Scholar 

  8. Chatfopadhyay, T. A new high pressure phase of InTe

  9. S. Pal, D.N. Bose, S. Asokan, E.S.R. Gopal, Anisotropic properties of the layered semiconductor InTe. Solid State Commun. 80(9), 753–756 (1991). https://doi.org/10.1016/0038-1098(91)90902-8

    Article  ADS  Google Scholar 

  10. M.K. Jacobsen, Y. Meng, R.S. Kumar, A.L. Cornelius, High pressure structural and transport measurements of InTe, GaTe, and InGaTe2. J. Phys. Chem. Solids 74(5), 723–728 (2013). https://doi.org/10.1016/j.jpcs.2013.01.011

    Article  ADS  Google Scholar 

  11. A. Bera et al., Sharp Raman anomalies and broken adiabaticity at a pressure induced transition from band to topological insulator in Sb 2 Se 3. Phys. Rev. Lett. 110(10), 107401 (2013). https://doi.org/10.1103/PhysRevLett.110.107401

    Article  ADS  Google Scholar 

  12. Y.A. Sorb et al., « Pressure-induced electronic topological transition in Sb2 S3. J. Phys. Condens. Matter 28(1), 015602 (2016). https://doi.org/10.1088/0953-8984/28/1/015602

    Article  ADS  Google Scholar 

  13. K. Saha, K. Légaré, I. Garate, Detecting band inversions by measuring the environment: fingerprints of electronic band topology in bulk phonon linewidths. Phys. Rev. Lett. 115(17), 176405 (2015). https://doi.org/10.1103/PhysRevLett.115.176405

    Article  ADS  Google Scholar 

  14. V. Rajaji et al., Pressure induced structural, electronic topological, and semiconductor to metal transition in AgBiSe2. Appl. Phys. Lett. 109(17), 171903 (2016). https://doi.org/10.1063/1.4966275

    Article  ADS  Google Scholar 

  15. A. Bera, A. Singh, D.V.S. Muthu, U.V. Waghmare, A.K. Sood, Pressure-dependent semiconductor to semimetal and lifshitz transitions in 2H-MoTe$_2$: raman and first-principles studies. J. Phys. Condens. Matter 29(10), 105403 (2017). https://doi.org/10.1088/1361-648X/aa55a1

    Article  ADS  Google Scholar 

  16. D. K. Schwarz, An Augmented Plane Wave + Local orbitals program for calculating crystal properties

  17. S.-H. Wei, Recent development of APW-based methods and Band structure of semiconductors

  18. Q. Wu, W. Yang, Empirical correction to density functional theory for van der Waals interactions. J. Chem. Phys. 116(2), 515–524 (2002)

    Article  ADS  Google Scholar 

  19. A. Van De Walle, G. Ceder, Correcting overbinding in local-density-approximation calculations. Phys. Rev. B 59(23), 14992–15001 (1999). https://doi.org/10.1103/PhysRevB.59.14992

    Article  ADS  Google Scholar 

  20. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30(9), 244–247 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  ADS  MathSciNet  Google Scholar 

  21. F. Bechstedt, F. Fuchs, G. Kresse, Ab-initio theory of semiconductor band structures: new developments and progress. Phys. Status Solidi B 246(8), 1877–1892 (2009). https://doi.org/10.1002/pssb.200945074

    Article  ADS  Google Scholar 

  22. I. Khan, I. Ahmad, B. Amin, G. Murtaza, Z. Ali, Bandgap engineering of Cd1−xSrxO. Phys. B Condens. Matter 406(13), 2509–2514 (2011). https://doi.org/10.1016/j.physb.2011.03.042

    Article  ADS  Google Scholar 

  23. I. Khan, I. Ahmad, H.A.R. Aliabad, M. Maqbool, DFT-mBJ studies of the band structures of the II-VI semiconductors. Mater. Today Proc. 2(10), 5122–5127 (2015). https://doi.org/10.1016/j.matpr.2015.11.008

    Article  Google Scholar 

  24. A.B. DjurisÏicÂ, E.H. Li, Optical dielectric function of semiconductors. Thin Solid Films 364(1–2), 239–243 (2000)

    Article  ADS  Google Scholar 

  25. R.L. Olmon et al., Optical dielectric function of gold. Phys. Rev. B 86(23), 235147 (2012). https://doi.org/10.1103/PhysRevB.86.235147

    Article  ADS  Google Scholar 

  26. G. Gu, Fundamentals of semiconductors: physics and materials properties

  27. J. A. R. Samson, D. L. Ederer, Éd., (1998) Vacuum ultraviolet spectroscopy. in experimental methods in the physical sciences, no. v. 31-<32 >. San Diego: Academic Press

  28. I. Guesmi, A. Challioui, L. El Farh, S. Malki, Z. Darhi, Study of the structural, electronic and optical properties of 1T-ZrX2 materials (X=S, Se, Te). Solid State Phenom. 335, 3–13 (2022). https://doi.org/10.4028/p-775o97

    Article  Google Scholar 

  29. R. Saniz, L.-H. Ye, T. Shishidou, A.J. Freeman, Structural, electronic, and optical properties of NiAl 3: first-principles calculations. Phys. Rev. B 74(1), 014209 (2006). https://doi.org/10.1103/PhysRevB.74.014209

    Article  ADS  Google Scholar 

  30. Z. Darhi, S. Malki, H. Abbadi, L. El Farh, I. Guesmi, A. Challioui, Ab-initio calculation of the structural, electronic, mechanical, optical, and thermoelectric properties of orthorhombic ZnAs compound. Phys. B Condens. Matter 654, 414722 (2023). https://doi.org/10.1016/j.physb.2023.414722

    Article  Google Scholar 

  31. S.A. Khan, A.H. Reshak, Z.A. Alahmed, Electronic band structure and optoelectronic properties of SrCu2X2 (X = As, Sb): DFT calculation. J. Mater. Sci. 49(14), 5208–5217 (2014). https://doi.org/10.1007/s10853-014-8230-3

    Article  ADS  Google Scholar 

  32. A. Bakhshayeshi, M.M. Sarmazdeh, R.T. Mendi, A. Boochani, First-principles prediction of electronic, magnetic, and optical properties of Co2MnAs full-heusler half-metallic compound. J. Electron. Mater. 46(4), 2196–2204 (2017). https://doi.org/10.1007/s11664-016-5158-1

    Article  ADS  Google Scholar 

  33. H. Shinotsuka, H. Yoshikawa, S. Tanuma, First-principles calculations of optical energy loss functions for 30 compound and 5 elemental semiconductors. E-J. Surf. Sci. Nanotechnol. 19, 70–87 (2021). https://doi.org/10.1380/ejssnt.2021.70

    Article  Google Scholar 

  34. R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope, google livres

  35. M. Dressel, G. Grüner, Electrodynamics of solids: optical properties of electrons in matter (Cambridge University Press, Cambridge New York Melbourne, 2002)

    Book  Google Scholar 

  36. M. Usman, J.U. Rehman, M.B. Tahir, A. Hussain, First-principles calculations to investigate the effect of Cs-doping in BaTiO3 for water-splitting application. Solid State Commun. 355, 114920 (2022). https://doi.org/10.1016/j.ssc.2022.114920

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mounaim Bencheikh: Study conceptualization, Investigation, Validation, Data curation and software, writing and main text editing, article revision, and approval of the final manuscript edition. Larbi El Farh: Critically reviewed and edited the manuscript, played a key role in research design, study supervision, and methodology. Allal Challioui: Formal analysis and methodology. Malki Siham: Contributed to validation, and manuscript proofreading. Zakariae Darhi: Validation and software. Ibtissam Guesmi: Data curation and software. Savas Kaya: Formal analysis.

All authors participated in the revision and approval of the final version of the manuscript.

Corresponding author

Correspondence to Mounaim Bencheikh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencheikh, M., El Farh, L., Malki, S. et al. Determination of the structural and optoelectronic properties of InTe cubic monochalcogenide using the WIEN2k code for its application in photovoltaics. J Opt (2024). https://doi.org/10.1007/s12596-024-01775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01775-4

Keywords

Navigation