Skip to main content

Advertisement

Log in

Low-cost fabrication of single chalcogenide CuInGaSe2 sputter target and its thin films for solar cell applications

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Copper indium(1-x) Gallium(x) Diselenide (CIGS) layer for (x = 0.3) was optimized for low cost developing 50 × 50 mm CIGS solar cell module. For depositing the CIGS thin-film layer by RF-sputtering technique, single quaternary chalcopyrite CIGS sputter target was fabricated by High energy Ball Milling followed by a cold press vacuum sintering process. CIGS thin-film layer has been deposited at 10, 15, and 20 mTorr deposition pressure and 125, 150, and 175 W RF-Power. The effect of Rapid thermal annealing was studied under different annealing profiles. It was found that CIGS thin-film layer deposited at 15 mTorr, 150 W, and annealing for 250 °C results in a smooth surface however the grain size is very small. Further, the Rapid Thermal Annealing (RTA) process of CIGS film-annealed under a two-step annealing process [400 °C (2 min) + 550 °C (8 min)] possesses the sharp and intense X-ray peak. Physical, optical, elemental, and microstructural topographical analyses of CIGS thin film were analyzed. Optimized CIGS thin film was used as an absorber functional layer in the fabrication CIGS solar cell module. The cell draws 2.23% and the module 3.17% conversion efficiency. Grazing Incidence X-ray Diffraction (GIXRD), Secondary-ion mass spectrometry (SIMS) Field emission scanning electron microscopy (FESEM), and Current–Voltage (I–V) characteristics of the device were investigated for in-depth phase formation, elemental distribution, microstructural, and performance analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Regmi, A. Ashok, P. Chawla et al., Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. J. Mater. Sci. Mater. Electron. 31, 7286–7314 (2020). https://doi.org/10.1007/s10854-020-03338-2

    Article  Google Scholar 

  2. K.N. Pabitra, M. Suhas, J.S. Henry, C. David, Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019). https://doi.org/10.1038/s41578-019-0097-0

    Article  Google Scholar 

  3. L.K. Lawrence, F.R. White, G.K. Morgan, Thin film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett. 29, 268–270 (1976). https://doi.org/10.1063/1.89041

    Article  ADS  Google Scholar 

  4. E.D. Walter, S.C. Wen, M.S. John, A.M. Reid, Structure and properties of high efficiency ZnO /CdZnS /CuInGaSe2 solar cells. IEEE Trans. Electron. Dev. 37(2), 428–433 (1990). https://doi.org/10.1109/16.46378

    Article  Google Scholar 

  5. G. Martin, D. Ewan, H.-E. Jochen, Y. Masahiro, K. Nikos, H. Xiaojing, Solar cell efficiency tables (version 57). Prog. Photovolt. Res. Appl. (2020). https://doi.org/10.1002/pip.3371

    Article  Google Scholar 

  6. I. Shogo, J.F. Paul, Role of the Cu-deficient interface in Cu(In, Ga) Se2 thin-film photovoltaics with alkali-metal doping. Phys. Rev. Appl. 15, 054005 (2021). https://doi.org/10.1103/PhysRevApplied.15.054005

    Article  Google Scholar 

  7. S.Y. Brijesh, K. Suresh, R.D. Suhash, R.D. Sanjay, Microstructural investigation of inkjet printed Cu(In, Ga) Se2 thin film solar cell with improved efficiency. J. Alloys Compd. 827, 154295 (2020). https://doi.org/10.1016/j.jallcom.2020.154295

    Article  Google Scholar 

  8. R. Ingrid, A.C. Miguel, E. Brian, D. Clay, S. John, L.P. Craig, T. Bobby, N. Rommel, 19.9%-efficient ZnO/CdS/CuInGa Se2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235–239 (2008). https://doi.org/10.1002/pip.822

    Article  Google Scholar 

  9. M.M. Islam, T. Sakurai, S. Ishizuka et al., Effect of Se/(Ga+In) ratio on MBE grown Cu(In, Ga) Se2 thin film solar cell. J. Cryst. Growth 311, 2212–2214 (2009). https://doi.org/10.1016/j.jcrysgro.2008.12.005

    Article  ADS  Google Scholar 

  10. T. Mu-Gong, T. Hsien-Tse, C. In-Gann et al., Annealing effect on the properties of Cu(In0.7Ga0.3) Se2 thin films grown by femtosecond pulsed laser deposition. J. Am. Ceram. Soc. 96(8), 2419–2423 (2013). https://doi.org/10.1111/jace.12422

    Article  Google Scholar 

  11. P. Jin-Ho, A. Mohammad, K. Michael, O.’B. Paul, J.O. David, R. Jim, W. John, The deposition of thin films of CuME2 by CVD techniques (M~In, Ga and E~S, Se). J. Mater. Chem. 13, 1942–1949 (2003). https://doi.org/10.1039/b302896h

    Article  Google Scholar 

  12. H.M. Sung, J.P. Se, H.K. Sang, W.L. Min, Monolithic DSSC/CIGS tandem solar cell fabricated by a solution process. Sci. Rep. 5, 8970 (2015). https://doi.org/10.1038/srep08970

    Article  Google Scholar 

  13. C.D. Ravi, A.C. Jennifer, R. Venkatesh et al., Effect of sputtering power on properties and photovoltaic performance of CIGS thin film solar cells. Mater. Res. Innov. 21(5), 286–293 (2016). https://doi.org/10.1080/14328917.2016.1214226

    Article  Google Scholar 

  14. F. Kessler, D. Hariskos, S. Spiering, E. Lotter, H. P. Huber and R. Wuerz, CIGS thin film photovoltaic—approaches and challenges. In: Petrova-Koch, V, Hezel, R, Goetzberger A (eds.) High-efficient low-cost photovoltaics recent developments Switzerland AG, pp. 175–208 (2020). https://doi.org/10.1007/978-3-030-22864-4_9

  15. N. Zhang, D.-M. Zhuang, G. Zhang, An investigation on preparation of CIGS targets by sintering process. Mater. Sci. Eng. B 166, 34–293 (2010). https://doi.org/10.1016/j.mseb.2009.09.026

    Article  Google Scholar 

  16. P. Baláž, M. Baláž, M. Achimovičová, Z. Bujňáková, E. Dutková, Chalcogenide mechanochemistry in materials science: insight into synthesis and applications. J. Mater. Sci. 52, 11851–11890 (2017). https://doi.org/10.1007/s10853-017-1174-7

    Article  ADS  Google Scholar 

  17. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  Google Scholar 

  18. Z. Leng, Z. Daming, Z. Ming et al., The effects of selenium content on Cu(InGa) Se2 thin film solar cells by sputtering from quaternary target with Se-free post annealing. Vacuum 137, 205–208 (2017). https://doi.org/10.1016/j.vacuum.2016.12.041

    Article  Google Scholar 

  19. D.M. Jason, A.F. Jesse, Y.B. Robel et al., Effects of sputtering technique on quaternary sputtered Cu(In, Ga)Se2 films. Proc. SPIE 9177(1–7), 917708 (2015). https://doi.org/10.1117/12.2062213

    Article  Google Scholar 

  20. C. Qing, G. Oki, C. Matthew, B.R. Kathleen, S.C. Jay, R.D. Vaughn, B.M. David, Defects in Cu(In, Ga)Se 2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Adv. Energy. Mater. 1, 845–853 (2011). https://doi.org/10.1002/aenm.201100344

    Article  Google Scholar 

  21. B. Jinlian, A. Jianping, Y. Liyong et al., Effect of Cu content in CIGSe absorber on MoSe2 formation during post-selenization process. Mater. Sci. Semicond. Process 121, 105275 (2021). https://doi.org/10.1016/j.mssp.2020.105275

    Article  Google Scholar 

  22. F.G. Jean, K. Leeor, C. David, R. Uwe, J. Axel, W.S. Hans, Stability issues of Cu(In, Ga)Se2-based solar cells. J. Phys. Chem. B 104, 4849–4862 (2009). https://doi.org/10.1021/jp993143k

    Article  Google Scholar 

  23. C. Shih-Chen, W. Sheng-Wen, K. Shou-Yi, A comprehensive study of one-step selenization process for Cu(In1−xGax)Se2 thin film solar cells. Nanoscale Res. Lett. 12, 208 (2017). https://doi.org/10.1186/s11671-017-1993-0

    Article  ADS  Google Scholar 

  24. Y. Yong, L. Shasha, O. Yufeng et al., Structure and properties of CIGS films based on one-stage RF-sputtering process at low substrate temperature. J. Mod. Transport 22(1), 37–44 (2014). https://doi.org/10.1007/s40534-014-0035-1

    Article  Google Scholar 

  25. S. Lei, M. Jianhua, Y. Niangjuan, H. Zhiming, C. Junhao et al., Copper content dependence of electrical properties and Raman spectra of Se-deficient Cu(In, Ga)Se2 thin films for solar cells. J. Mater. Sci. Mater. Electron. 27, 9124–9130 (2016). https://doi.org/10.1007/s10854-016-4947-x

    Article  Google Scholar 

  26. S. William, J.Q. Hans, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  Google Scholar 

  27. P. Jae-Cheol, A.-J. Mowafak, L. Byung-Teak, K. Tae-Won, 10% efficiency Cu(In, Ga)Se2 solar cell with strongly (220)/(204) oriented Cu-poor absorber layers sputtered using single quaternary target. J. Alloys. Comp. 812, 152065 (2020). https://doi.org/10.1016/j.jallcom.2019.152065

    Article  Google Scholar 

  28. G. Rey, C. Spindler, F. Babbe, Absorption coefficient of a semiconductor thin film from photoluminescence. Phys. Rev. Appl. 9, 064008 (2018). https://doi.org/10.1103/PhysRevApplied.9.064008

    Article  ADS  Google Scholar 

  29. F.B. Dejene, The optical and structural properties of polycrystalline Cu(In, Ga)(Se, S)2 absorber thin films. J. Mater. Sci. 46, 6981–6987 (2011). https://doi.org/10.1007/s10853-011-5666-6

    Article  ADS  Google Scholar 

  30. N.V. Kurik, Urbach rule. Phys Stat. Sol. (A) 8, 9–45 (1971). https://doi.org/10.1002/pssa.2210080102

    Article  ADS  Google Scholar 

  31. K.K. John, W.H. Hugh, Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014). https://doi.org/10.1063/1.4898346

    Article  Google Scholar 

  32. P. Jae-Cheol, L. Jeon-Ryang, A.-J. Mowafak, K. Tae-Won, Bandgap engineering of Cu(In1-xGax)Se2 absorber layers fabricated using CuInSe2 and CuGaSe2 targets for one-step sputtering process. Opt. Mater. Express 6(11), 3541–3549 (2016). https://doi.org/10.1364/OME.6.003541

    Article  ADS  Google Scholar 

  33. H.W. Max, C. Romain, A. Enrico, How band tail recombination influences the open-circuit voltage of solar cells. Prog. Photovolt. Res. Appl. (2020). https://doi.org/10.1002/pip.3449

    Article  Google Scholar 

  34. W. Joeson, T.O. Stefan, A.A. Harry, Impact of semiconductor band tails and band filling on photovoltaic efficiency limits. ACS Energy Lett. 6, 52–57 (2021). https://doi.org/10.1021/acsenergylett.0c02362

    Article  Google Scholar 

  35. C. Jakapan, K. Yu, N. Takahito, M. Abdurashid, M. Takashi, Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells. Sol. Energy Mater. Sol. Cells 210, 110502 (2020). https://doi.org/10.1016/j.solmat.2020.110502

    Article  Google Scholar 

  36. R. Uwe, B. Beatrix, C.M.M. Thomas, K. Thomas, Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017). https://doi.org/10.1103/PhysRevApplied.7.044016

    Article  Google Scholar 

  37. C.M. Ruiz, X. Fontané, A. Fairbrother, Impact of electronic defects on the Raman spectra from electrodeposited Cu(In, Ga)Se2 solar cells: application for non-destructive defect assessment. Appl. Phys. Lett. 102, 091106 (2013). https://doi.org/10.1063/1.4793418

    Article  ADS  Google Scholar 

  38. A.J. Zhou, D. Mei, X.G. Kong et al., One-step synthesis of Cu(In, Ga)Se2 absorber layers by magnetron sputtering from a single quaternary target. Thin Solid Films 520, 6068–6074 (2012). https://doi.org/10.1016/j.tsf.2012.05.035

    Article  ADS  Google Scholar 

  39. S. Roy, P. Guha, S.N. Kundu, Characterization of Cu(In, Ga)Se2 films by Raman scattering. Mater. Chem. Phys. 73, 24–30 (2002). https://doi.org/10.1016/S0254-0584(01)00345-5

    Article  Google Scholar 

  40. W. Wolfram, K. Robert, P. Michael, Raman investigations of Cu(In, Ga)Se2 thin films with various copper contents. Thin Solid Films 517, 867–869 (2008). https://doi.org/10.1016/j.tsf.2008.07.011

    Article  ADS  Google Scholar 

  41. L. Marsha, B. Eugene, J. Qiongzhong, et al., Control of CIGS roughness by initial selenization temperature, in: IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp 1–4 (2015). https://doi.org/10.1109/PVSC.2015.7356222.

  42. Z. Jehl, F. Erfurth, N. Naghavi, et al., Influence of the surface roughness on cigs-based solar cell parameters, in: 25th EUPVSEC 5th World Conference on Photovoltaic Energy Conversion, pp. 6–10 (2010). https://doi.org/10.13140/2.1.2519.7445

  43. L. Xianzhong, K. Reiner, W. Lan et al., 11.3% efficiency Cu(In, Ga)(S, Se)2 thin film solar cells by drop-on-demand inkjet printing. Energy Environ. Sci. 9, 2037–2043 (2016). https://doi.org/10.1039/C6EE00587J

    Article  Google Scholar 

  44. T. Mirjam, H. Ruud, B. Nicolas, S. Henk, B. Amarante, The effect of damp heat-illumination exposure on CIGS solar cells: a combined XRD and electrical characterization study. Sol. Energy Mater. Sol. Cells 157, 943–952 (2016). https://doi.org/10.1016/j.solmat.2016.07.051

    Article  Google Scholar 

  45. H. Dimitrios, H. Wolfram, M. Richard, W. Witte, Influence of substrate temperature during InxSy sputtering on Cu(In, Ga)Se2/buffer interface properties and solar cell performance. Appl. Sci. 10, 1052 (2002). https://doi.org/10.3390/app10031052

    Article  Google Scholar 

  46. J. Yonkil, K. Chae-Woong, P. Dong-Won, Field modulation in Na-incorporated Cu(In, Ga)Se2 (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities. Nanoscale Res. Lett. 6, 581 (2011). https://doi.org/10.1186/1556-276X-6-581

    Article  ADS  Google Scholar 

  47. L. Weimin, Y. Xia, X. Wei-Lun, L. Jidong, G.A. Armin, V. Selvaraj, Efficiency improvement of CIGS solar cells by a modified rear contact. Sol. Energy 157, 486–495 (2017). https://doi.org/10.1016/j.solener.2017.08.054

    Article  Google Scholar 

  48. J.J. Yun, L. Jihye, L. Kang-Bong, K. Donghwan, L. Yeonhee, Quantitative analysis and band gap determination for cigs absorber layers using surface techniques. J. Anal. Methods. Chem. 2018, 1–9 (2018). https://doi.org/10.1155/2018/6751964

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST) for financial support under the SERI research Project No. DST/TMD/SERI/D 16(G) dated 12/05/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Panchal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryavanshi, P.S., Panchal, C.J. Low-cost fabrication of single chalcogenide CuInGaSe2 sputter target and its thin films for solar cell applications. J Opt 53, 828–846 (2024). https://doi.org/10.1007/s12596-023-01324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01324-5

Keywords

Navigation