Skip to main content
Log in

VLC channel characteristics and data transmission model in indoor environment for future communication: an overview

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

There will be adverse effects on human health while the exposure of Radio frequency (RF) waves is long term in the indoor environment. The old age people, children’s and patients will be badly affected, if their immune system is weak. In such environment, the visible light communication (VLC) is the preferred communication technique which provides immunity towards the adverse effects by RF. Presently the fluorescent lamps were replaced by light-emitting diodes (LEDs) in the indoor environment. The practice of utilizing the LEDs have been penetrated in many areas in our day to day life. The device will provide lightning capabilities and also information broadcast. In VLC for the purpose of data transmission and reception, the LED light source and photodetector (PD) were used. The work presents about VLC channel model, LED characteristics, data transmission model (RPO-OFDM-vDSM model) in indoors which provides better spectral efficiency and data rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Cisco Annual Internet Report, 2018–2023)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U.K. Latif, Visible light communication: applications, architecture, standardization and research challenges. Digit Commun Netw 3(2), 78–88 (2017). https://doi.org/10.1016/j.dcan.2016.07.004

    Article  Google Scholar 

  2. P. Muneer et al., A novel non-DC biased intensity modulated indoor MIMO-VLC system using Walsh precoder. Wirel Commun Mobile Comput 2020, 1–9 (2020). https://doi.org/10.1155/2020/1437049

    Article  Google Scholar 

  3. S.H. Younus, A.A. Al-Hameed, M. Alhartomi, A.T. Hussein, Massive MIMO for indoor VLC systems. IEEE ICTON (2020). https://doi.org/10.1109/ICTON51198.2020.9203471

    Article  Google Scholar 

  4. Z. Jiran, M. Longhua, Z. Xin, PWM-based dimmable hybrid optical OFDM for visible-light communication. IET Commun. 14(6), 930–936 (2020)

    Article  Google Scholar 

  5. K.N. Pavana, K.L. Sudha, Wireless communication using VLC and MIMO technology. IJRTI 5(9), 2456–3315 (2020)

    Google Scholar 

  6. S. Shaik, P. Sai Manideep, M. Shahin Begum, V.V. Bharga, P.D.N. Malleswara Rao, PC to PC file transfer using Li-Fi technology. IRJET 7(8), 2224–2227 (2017). https://doi.org/10.14445/22315381/IJETT-V46P223

    Article  Google Scholar 

  7. A. Al-Kinani, C.X. Wang, L. Zhou, W. Zhang, Optical wireless communication channel measurements and models. IEEE Commun. Surv. Tutor. 20(3), 1939–1962 (2018)

    Article  Google Scholar 

  8. H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17(4), 2047–2077 (2015)

    Article  Google Scholar 

  9. H. Chun, C.J. Chiang, A. Monkman et al., A study of illumination and communication using organic light emitting diodes. J. Lightw. Technol. 31, 3511–3517 (2013)

    Article  ADS  Google Scholar 

  10. M. Arias, I. Castro, D.G. Lamar et al., Optimized design of a high input voltage-ripple-rejection converter for LED lighting. IEEE Trans. Power Electr. 33, 5192–5205 (2018)

    Article  ADS  Google Scholar 

  11. P. Palacios Játiva et al., Interference mitigation for visible light communications in underground mines using angle diversity receivers. Sensors 20, 367 (2020). https://doi.org/10.3390/s20020367

    Article  ADS  Google Scholar 

  12. U. Thummaluri, A. Kumar, L. Natarajan, MIMO codes for uniform illumination across space and time in VLC with dimming control. IEEE Photo. J. 11(3), 1–21 (2019). https://doi.org/10.1109/JPHOT.2019.2918063

    Article  Google Scholar 

  13. P. Palacios-Játiva et al., A VLC channel model for underground mining environments with scattering and shadowing. IEEE Access 8, 185445–185464 (2020)

    Article  Google Scholar 

  14. T. Komine, M. Nakagawa, Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Cons. Electr. 50(1), 100–107 (2020)

    Article  Google Scholar 

  15. C. Medina, M. Zambrano, K. Navarro, Led based visible light communication: technology, applications and challenges – a survey. Int. J. Adv. Eng. Technol. 8(4), 482–495 (2015)

    Google Scholar 

  16. Z. Wang, W.D. Zhong, C. Yu et al., Performance of dimming control scheme in visible light communication system. Optics Expr. 20, 18861–18868 (2012). https://doi.org/10.1364/OE.20.018861

    Article  ADS  Google Scholar 

  17. L. Kwonhyung, P. Hyuncheol, Modulations for visible light communications with dimming control. IEEE Photon. Technol. Lett. 23, 1136–1138 (2011). https://doi.org/10.1109/LPT.2011.2157676

    Article  Google Scholar 

  18. J. Lian et al., Indoor visible light communications, networking, and applications. J. Phys. Photonics 1, 012001 (2019)

    Article  ADS  Google Scholar 

  19. D. Karunatilaka, F. Zafar, V. Kalavally, R. Parthiban LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutor. 17(3), (2015)

  20. S Okada et al. On-vehicle receiver for distant visible light road-to-vehicle communication. In: IEEE IV Symposium, Xi’an, China, pp. 1033–1038, (2009)

  21. S. Dimitrov, H. Haas, Information rate of OFDM-based optical wireless communication systems with nonlinear distortion. J. Lightw. Technol. 31(6), 918–929 (2013)

    Article  ADS  Google Scholar 

  22. R. Mesleh, H. Elgala, H. Haas, On the performance of different OFDM based optical wireless communication system. J. Opt. Commun. Netw 3(8), 6203 (2011)

    Article  Google Scholar 

  23. S. Rajagopal, R.D. Roberts, S.-K. Lim, IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50(3), 72–82 (2012)

    Article  Google Scholar 

  24. J. Rufo, C. Quintana, F. Delgado, J. Rabadan, and R. Perez-Jimenez, “Considerations on modulations and protocols suitable for Visible Light Communications (VLC) channels: low and medium baud rate indoor visible light communications links”, In Proc IEEE CCNC. pp. 362–364 (2011)

  25. S.H. Lee, K.-I. Ahn, J.K. Kwon, Multilevel transmission in dimmable visible light communication systems. J. Lightw. Technol. 31(20), 3267–3276 (2013)

    Article  ADS  Google Scholar 

  26. B. Anitha Vijayalakshmi, M. Nesasudha, Outlook on multicarrier modulation techniques worn in intensity modulation and direct detection under dimming, J. Adv. Res. Dyn. Contr. Syst. Vol. 10(7) (2018)

  27. H. Elgala, R. Mesleh, and H. Haas, “Practical Considerations for Indoor Wireless Optical System Implementation using OFDM”, In Proc. of the IEEE 10th International Conference on Telecommunications (ConTel). Zagreb. Croatia (2009)

  28. J. Armstrong, A.J. Lowery, Power efficient optical OFDM. Electr. Lett. 42(6), 370–372 (2009). https://doi.org/10.1049/el:20063636

    Article  ADS  Google Scholar 

  29. Z. Wang, W.D. Zhong, C. Yu, J. Chen, C.P. Francois, W. Chen, Performance of dimming control scheme in visible light communication system. Opt. Expr. 20(17), 18861–18868 (2012). https://doi.org/10.1364/OE.20.018861

    Article  ADS  Google Scholar 

  30. A. Gulati, Delta sigma modulation using Cypress’ High Brightness-LED Controllers, Cypress perform (2008)

  31. B. Anitha Vijayalakshmi, M. Nesasudha, Flicker mitigation in dimmed LEDs installed indoors using vDSM digital dimming technique under visible light communication. Opt Quant Electr 52, 77 (2008). https://doi.org/10.1007/s11082-020-2201-5

    Article  Google Scholar 

  32. B. Anitha Vijayalakshmi, M. Nesasudha, ERPO-OFDM for data transmission and brightness control in visible light communication system. Opt. Quant. Electr. 53, 489 (2021). https://doi.org/10.1007/s11082-021-02977-x

    Article  Google Scholar 

  33. M.S.M. Gismalla, M.F.L. Abdullah, Optimization of received power and SNR for an indoor attocells network in visible light communication. J. Commun. 14(1), 64–69 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Anitha Vijayalakshmi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, B.A., Gandhimathi, P. & Nesasudha, M. VLC channel characteristics and data transmission model in indoor environment for future communication: an overview. J Opt 53, 933–939 (2024). https://doi.org/10.1007/s12596-023-01316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01316-5

Keywords

Navigation