Skip to main content
Log in

Design and development of a prism–mirror module for single-shot phase retrieval of a microlens

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In various phase retrieval methods, the phase is retrieved by measuring the intensity of propagating light waves at multiple planes by moving the detector in the longitudinal direction and then solving the phase retrieval problem by deterministic or iterative methods. In this article, we present the design and development of a prism–mirror based optical module to capture simultaneously two defocused intensity images at different planes in single-shot. The proposed method has been applied for the transmitted wavefront measurement of the microlens and its phase retrieval using the transport of intensity equation. The results obtained by this method have been compared with interferometry-based measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Zernike, How I discovered phase contrast. Science 121(3145), 345–349 (1955)

    Article  ADS  Google Scholar 

  2. G. Baffou, Quantitative phase microscopy using quadriwave lateral shearing interferometry (QLSI): principle, terminology, algorithm and grating shadow description. J. Phys. D: Appl. Phys. 54, 294002 (2021)

    Article  ADS  Google Scholar 

  3. I. Yamaguchi, T. Zhang, Phase shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)

    Article  ADS  Google Scholar 

  4. M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156–160 (1982)

    Article  ADS  Google Scholar 

  5. M.P. Singh, M. Singh, K. Khare, Single shot interferogram analysis for optical metrology. Appl. Opt. 53, 6713–6718 (2014)

    Article  ADS  Google Scholar 

  6. D. Malacara, Optical shop testing, Wiley series in pure and applied optics (Wiley, New York, 1992)

    Google Scholar 

  7. B. Platt, R. Shack, History and principles of Shack–Hartmann wavefront sensing. J. Refract. Surg. 17(5), 573–577 (2001)

    Article  Google Scholar 

  8. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1971)

    Google Scholar 

  9. P.F. Almoro, A.M.S. Maallo, S.G. Hanson, Fast convergent algorithm for speckle based phase retrieval and a design for dynamic wavefront sensing. Appl. Opt. 48, 1485–1493 (2009)

    Article  ADS  Google Scholar 

  10. J.F. Binamira, P.F. Almoro, Accelerated single beam multiple-intensity reconstruction using unordered propagations. Opt. Lett. 44, 3130–3133 (2019)

    Article  ADS  Google Scholar 

  11. M.K. Sharma, C. Gaur, P. Senthilkumaran, K. Khare, Phase imaging using spiral-phase diversity. Appl. Opt. 54, 3979–3985 (2015)

    Article  ADS  Google Scholar 

  12. G. Zheng, R. Horstmeyer, C. Yang, Wide-field, high resolution Fourier Ptychographic microscopy. Nat. Photon. 7(9), 739–745 (2013)

    Article  ADS  Google Scholar 

  13. M.R. Teague, Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983)

    Article  ADS  Google Scholar 

  14. N. Pandey, K. Khare, Two-dimensional phase unwrapping using the transport of intensity equation. Appl. Opt. 55, 2418–2425 (2016)

    Article  ADS  Google Scholar 

  15. N. Pandey, M.P. Singh, A. Ghosh, K. Khare, Optical surface measurement using accurate carrier estimation in Fourier transform fringe analysis and phase unwrapping based upon transport of intensity equation. J. Opt. 47, 389–395 (2018)

    Article  Google Scholar 

  16. L. Tian, J.C. Petruccelli, Q. Miao, H. Kudrolli, V. Nagarkar, G. Barbastathis, Compressive x-ray phase tomography based on the transport of intensity equation. Opt. Lett. 38, 3418–3421 (2013)

    Article  ADS  Google Scholar 

  17. J. Amiri, A. Darudi, S. Khademi, P. Soltani, Application of transport-of-intensity equation in fringe analysis. Opt. Lett. 39, 2864–2867 (2014)

    Article  ADS  Google Scholar 

  18. A.K. Gupta, N.K. Nishchal, P.P. Banerjee, Transport of intensity equation based photon-counting phase imaging. OSA Continuum. 3, 236–245 (2020)

    Article  Google Scholar 

  19. N. Yoneda, Y. Saita, K. Komuro, T. Nobukawa, T. Nomura, Transport-of-intensity holographic data storage based on a computer-generated hologram. Appl. Opt. 57, 8836–8840 (2018)

    Article  ADS  Google Scholar 

  20. D. Paganin et al., Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002)

    Article  MathSciNet  Google Scholar 

  21. P.K. Poola, R. John, Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation. J. Biomed. Opt. 22(10), 106001 (2017)

    Article  ADS  Google Scholar 

  22. L. Waller, S.S. Kou, C.J.R. Sheppard, G. Barbastathis, Phase from chromatic aberrations. Opt. Express. 18, 22817–22825 (2010)

    Article  ADS  Google Scholar 

  23. L. Waller, Y. Luo, Se Young Yang, and George Barbastathis, Transport of intensity phase imaging in a volume holographic microscope. Opt. Lett. 35, 2961–2963 (2010)

    Article  ADS  Google Scholar 

  24. S.S. Gorthi, E. Schonbrun, Phase imaging flow cytometry using a focus-stack collecting microscope. Opt. Lett. 37, 707–709 (2012)

    Article  ADS  Google Scholar 

  25. C. Zuo, Q. Chen, Qu. Weijuan, A. Asundi, High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt. Express 21, 24060–24075 (2013)

    Article  ADS  Google Scholar 

  26. W.J. Zhou, X. Guan, F. Liu, Y. Yu, H. Zhang, T.C. Poon, P.P. Banerjee, Phase retrieval based on transport of intensity and digital holography. Appl. Opt. 57, A229–A234 (2018)

    Article  Google Scholar 

  27. G. Nehmetallah, T.C. Nguyen, D. Tran, A. Darudi, P. Soltani, SLM-based tomography of phase objects using single-shot transport of intensity technique. Proc. SPIE 9868, 98680H (2016)

    Article  ADS  Google Scholar 

  28. W. Yu, X. Tian, X. He, X. Song, L. Xue, C. Liu, S. Wang, Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method. Appl. Phys. Lett. 109, 071112 (2016)

    Article  ADS  Google Scholar 

  29. Y. Li, J. Di, C. Ma, J. Zhang, J. Zhong, K. Wang, T. Xi, J. Zhao, Quantitative phase microscopy for cellular dynamics based on transport of intensity equation. Opt. Express 26, 586–593 (2018)

    Article  ADS  Google Scholar 

  30. Q. Gong et al., Digital field of view correction combined dual-view transport of intensity equation method for real-time quantitative imaging. Opt. Eng. 57(6), 063102 (2018)

    Article  ADS  Google Scholar 

  31. X. Zhang et al., Single-shot common-path transport of intensity equation method with Greek-ladder sieves. Opt. Lasers Eng. 126, 105898 (2020)

    Article  ADS  Google Scholar 

  32. A.K. Gupta, R. Mahendra, N.K. Nishchal, Single-shot phase imaging based on transport of intensity equation. Optics Communications 477, 126347 (2020)

    Article  Google Scholar 

  33. C. Zuo et al., Transport of intensity equation: a tutorial. Opt. Lasers Eng. 135, 106187 (2020)

    Article  Google Scholar 

  34. N. Pandey, M.P. Singh, P.K. Sharma, K. Khare, Single-shot phase retrieval for aspheric surface testing based on the transport of intensity equation and a prism-mirror module. Opt. Eng. 61(5), 054101–054101 (2022)

    Article  ADS  Google Scholar 

  35. D. Paganin, K.A. Nugent, Non-interferometric phase imaging with partially coherent light. Phys. Rev. Lett. 80, 2586–2589 (1998)

    Article  ADS  Google Scholar 

  36. F. Roddier, Wavefront sensing and the irradiance transport equation. Appl. Opt. 29, 1402–1403 (1990)

    Article  ADS  Google Scholar 

  37. K. Ishizuka, Phase measurement of atomic resolution image using transport of intensity equation. J. Electron Microsc. 54(3), 191–197 (2005)

    Google Scholar 

  38. C. Dorrer, J.D. Zuegel, Optical testing using the transport-of-intensity equation. Opt. Express 15(12), 7165 (2007)

    Article  ADS  Google Scholar 

  39. J.W. Goodman, Introduction to Fourier optics (McGraw-Hill, New York, 1996)

    Google Scholar 

  40. V.V. Volkov, Y. Zhu, M. De Graef, A new symmetrized solution for phase retrieval using the transport of intensity equation. Micron 33(5), 411–416 (2002)

    Article  Google Scholar 

  41. L. Tian, J.C. Petruccelli, G. Barbastathis, Nonlinear diffusion regularization for transport of intensity phase imaging. Opt. Lett. 37, 4131–4133 (2012)

    Article  ADS  Google Scholar 

  42. T. Chakraborty, J.C. Petruccelli, Optical convolution for quantitative phase retrieval using the transport of intensity equation. Appl. Opt. 57, A134–A141 (2018)

    Article  ADS  Google Scholar 

  43. N Pandey, K Khare, Sampling advantage of the transport of intensity phase retrieval method. In: 6th workshop on optics and photonics: theory and computational techniques (OPTCT) at IIT Delhi, (2022)

  44. F. Twyman, Prism and lens making: a textbook for optical glassworkers (Routledge, Abingdon, 1988)

    Google Scholar 

  45. A. Piegari, F. Flory, Optical thin films and coatings (Elsevier, Hoboken, 2013)

    Google Scholar 

  46. M. Singh, K. Khare, Accurate efficient carrier estimation for single-shot digital holographic imaging. Opt. Lett. 41, 4871–4874 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Ajay Kumar, Director IRDE, Dehradun for encouragement of this work and their valuable suggestions.

Funding

The present research did not receive any grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Neeraj Pandey has contributed in conceptualization, investigation, methodology, and writing original draft; M P Singh helped in the development of experimental setup. Kedar Khare helped in supervision, assisted in writing, reviewing, and editing.

Corresponding author

Correspondence to Neeraj Pandey.

Ethics declarations

Conflict of interest

The authors would like to declare that they do not have any conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, N., Singh, M.P. & Khare, K. Design and development of a prism–mirror module for single-shot phase retrieval of a microlens. J Opt 53, 1120–1128 (2024). https://doi.org/10.1007/s12596-023-01272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01272-0

Keywords

Navigation