Skip to main content
Log in

Radio over fiber system-based direct modulation VCSEL optical source

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the latest generation of optical fiber systems, broadband telecommunication network access with ultrahigh speed services is almost realized by passive optical network (PON) radio over fiber system. In this study, a least complex and cost-effective downstream radio over fiber system (RoF)-based direct modulation vertical cavity surface emitting laser (VCSEL) optical source is designed. Different simulations are presented, including the VCSEL output power dependence on the temperature. For the selected VCSEL, the maximum output power of 4mW at bias current of 13 mA and 20 °C, whereas the least power of 1.5mW at 9.5 mA and 60 °C was recorded. For a single user, the proposed system driving the VCSEL at 20 °C enabled 5Gbps data transmission up to 100 km with the significant signal performance. The RoF system is further expanded to include a 16-channel WDM system to design a passive optical network system to enhance the data rate and rout more independent subscribers to share the same optical fiber. Without externally modulating optical signal, the various simulations of Q-factor, bit error rate, and eye diagram conformed that the presented PON-based WDM and VCSEL support fiber span up to 100 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F.A. Chaqmaqchee, Contact geometrical study for top emitting 980 nm InGaAs/GaAsP vertical-cavity surface emitting lasers. ARO-The Sci. J. Koya Univ. 9(2), 112–116 (2021)

    Google Scholar 

  2. S.K. Jalal, R.Z.Y. Al-Maqdici, Enhanced performance of 32 GHz up to 200 km vertical cavity surface emitting laser (VCSEL) for fronthaul radio over fiber system. Arab. J. Sci. Eng. 48(5), 7043–7058 (2023)

    Article  Google Scholar 

  3. N. Yokota, K. Ikeda, H. Yasaka, Spin-injected birefringent VCSELs for analog radio-over-fiber systems. IEEE Photon. Technol. Lett. 33(6), 297–300 (2021)

    Article  ADS  Google Scholar 

  4. F.A.I. Chaqmaqchee, J.A. Lott, Impact of oxide aperture diameter on optical output power, spectral emission, and bandwidth for 980 nm VCSELs. OSA Continuum 3(9), 2602–2613 (2020)

    Article  Google Scholar 

  5. S. Ji, C. Xue, A. Valle, P.S. Spencer, H. Li, Y. Hong, Stabilization of photonic microwave generation in vertical-cavity surface-emitting lasers with optical injection and feedback. J. Lightwave Technol. 36(19), 4347–4353 (2018)

    Article  ADS  Google Scholar 

  6. M.-J. Li, K. Li, X. Chen, S. K. Mishra, A. A. Juarez, J. E. Hurley, and J. S. Stone, Single-mode VCSEL transmission over graded-index single-mode fiber around 850 nm. pp. 1–3, (2015)

  7. R. Rao, S. Chen, B. Chen, C. Bai, Study of a sub-wavelength scale plasmonic traveling wave amplifier with electrically pumped multiple quantum wells. Eng. Res. Express 3(4), 045029 (2021)

    Article  ADS  Google Scholar 

  8. F.A.I. Chaqmaqchee, S. Mazzucato, M. Oduncuoglu, N. Balkan, Y. Sun, M. Gunes, M. Hugues, M. Hopkinson, GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation. Nanoscale Res. Lett. 6, 1–7 (2011)

    Article  ADS  Google Scholar 

  9. P. Śpiewak, R.P. Sarzała, M. Wasiak, Impact of cavity design on the modulation properties of a GaAs-based VCSEL. Opt. Laser Technol. 163, 109373 (2023)

    Article  Google Scholar 

  10. H.M. Abdelzaher, I.M. El-Dokany, S.A. El-Dolil, O.A. Oraby, M.I. Dessouky, A.S. El-Fishawy, E.-S.M. El-Rabaie, F.E. Abd-El-Samie, Noise reduction in optical gyroscope signals based on hybrid approaches. J. Optics 51(1), 5–21 (2022)

    Article  Google Scholar 

  11. A. Mobin, A. Ahmad, PAPR and BER analysis of coded FBMC-OQAM system with non-linear companding techniques. Eng. Res. Express 4(2), 025026 (2022)

    Article  ADS  Google Scholar 

  12. S. Yahia, L. Graini, S. Beddiaf, A.B. Gabis, Y. Meraihi, Performance evaluation of a 60-GHz RoF-OFDM system for wireless applications. J. Optics 51(1), 194–202 (2022)

    Article  Google Scholar 

  13. M. Rani, P. Singal, An efficient IDMA-OFDM underwater wireless communication with Reed Solomon and Hamming code. J. Optics 512, 456–466 (2022)

    Article  Google Scholar 

  14. V.N. Jha, Y.K. Prajapati, Characterization of optical signal in the fiber networks on the basis of extinction ratio and the fiber length. J. Optics 51(3), 538–542 (2022)

    Article  Google Scholar 

  15. D.K. Verma, A.K. Garg, Analysis with gain and power for better coverage of FTTH network using WDM-PON architecture. J. Optics 25, 1–9 (2023)

    Google Scholar 

  16. E.N. Abdulla, A.K. Abass, A.A. Abdulkafi, Asymmetric 160/80 Gbps TWDM PON utilizing dispersion compensation technique. J. Optics 26, 1–1 (2022)

    Google Scholar 

  17. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, K.-H. Song, Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. J. Lightwave Technol. 22(11), 2582 (2004)

    Article  ADS  Google Scholar 

  18. A. Belkacem, A.R. Borsali, A new full-duplex analog RoF transmission system for 5G/5G+ broadband mobile communication. J. Electr. Eng. 74(1), 1–12 (2023)

    Google Scholar 

  19. A. Armghan, K. Aliqab, F. Ali, F. Alenezi, M. Alsharari, Vertical cavity surface emitting laser performance maturing through machine learning for high-yield optical wireless network. Micromachines 13(12), 2132 (2022)

    Article  Google Scholar 

  20. P. Sahu, M. Singh, Multi channel frequency hopping spread spectrum signaling using code M-ary frequency shift keying. Comput. Electr. Eng. 34(4), 338–345 (2008)

    Article  ADS  Google Scholar 

  21. P. Sahu, M. Singh, Multichannel direct sequence spectrum signaling using code phase shift keying. Comput. Electr. Eng. 35(1), 218–226 (2009)

    Article  ADS  Google Scholar 

  22. B.C. Chatterjee, N. Sarma, P.P. Sahu, Priority based dispersion-reduced wavelength assignment for optical networks. J. Lightwave Technol. 31(2), 257–263 (2012)

    Article  ADS  Google Scholar 

  23. B.C. Chatterjee, N. Sarma, P.P. Sahu, Priority based routing and wavelength assignment with traffic grooming for optical networks. J. Opt. Commun. Netw. 4(6), 480–489 (2012)

    Article  Google Scholar 

  24. M. Hanif, H.H. Nguyen, Frequency-shift chirp spread spectrum communications with index modulation. IEEE Internet Things J. 8(24), 17611–17621 (2021)

    Article  Google Scholar 

  25. G.P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, USA, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirwan Kareem Jalal.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalal, S.K., Al-Maqdici, R.Z.Y. Radio over fiber system-based direct modulation VCSEL optical source. J Opt 53, 1144–1154 (2024). https://doi.org/10.1007/s12596-023-01224-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01224-8

Keywords

Navigation