Skip to main content
Log in

Stimulated Raman scattering of self-focused Laguerre–Gaussian laser beams in axially inhomogeneous plasma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper presents a theoretical investigation on stimulated Raman scattering (SRS) of intense Laguerre–Gaussian (LG) laser beams propagating through plasma with axial density ramp. The optical nonlinearity of the plasma has been considered to be originating due the ponderomotive force acting on the plasma electrons due to intensity gradient over the cross section of laser beam. An intense laser beam with frequency \({\omega }_{0}\) propagating through plasma gets coupled with a preexisting electron plasma wave (EPW) at frequency ωep and produces a back scattered wave at frequency \({\omega }_{s}={\omega }_{0}-{\omega }_{ep}\). Using variational theory semi-analytical solution of the set of coupled wave equations for the pump, EPW and scattered wave has been obtained under W.K.B approximation. It has been observed that power of the scattered wave is significantly affected by the self-focusing effect of pump beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.S. Craxton et al, Direct-drive inertial confinement fusion: a review. Phys. Plasmas 22, 110501 (2015)

    Article  ADS  Google Scholar 

  2. R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers. Nature Phys. 12, 435 (2016)

    Article  ADS  Google Scholar 

  3. J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications. Nature 239, 139 (1972)

    Article  ADS  Google Scholar 

  4. E. Gschwendtner, P. Muggli, Plasma wakefield accelerators. Nat Rev Phys 1, 246 (2019)

    Article  Google Scholar 

  5. E. Esarey, C.B. Schroeder, W. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  6. A. Reagan, M. Berrill, K.A. Wernsing, C. Baumgarten, M. Woolston, J.J. Rocca, High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths. Phys. Rev. A. 89, 053820 (2014)

    Article  ADS  Google Scholar 

  7. N. Lemos et al., X-ray sources using a picosecond laser driven plasma accelerator. Phys. Plasmas 26, 083110 (2019)

    Article  ADS  Google Scholar 

  8. M. Kumar, V.K. Tripathi, Y.U. Jeong, Laser driven terahertz generation in hot plasma with step density profile. Phys. Plasmas 22, 063016 (2015)

    Article  Google Scholar 

  9. C. Joshi, The nonlinear optics of plasmas. Phys. Scr. 30, 94 (1990)

    Google Scholar 

  10. Q. Feng, L. Cao, Z. Liu, C. Zheng, X. He, Stimulated Brillouin scattering of backward stimulated Raman scattering. Sci. Rep. 10, 3492 (2020)

    Article  ADS  Google Scholar 

  11. N. Gupta, Self focusing and axial phase modulation of laser beams carrying orbital angular momentum in collisionless plasmas. J. Opt. Quant. Electron. 53, 608 (2021)

    Article  Google Scholar 

  12. S. Weber, C. Riconda, V.T. Tikhonchuk, Strong kinetic effects in cavity-induced low-level saturation of stimulated brillouin backscattering for high-intensity laser-plasma interaction. Phys. Plasmas 12, 043101 (2005)

    Article  ADS  Google Scholar 

  13. B.J. Albright, L. Yin, K.J. Bowers, B. Bergen, Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion- wave decay. Phys. Plasmas 23, 032703 (2016)

    Article  ADS  Google Scholar 

  14. C.J. Randall, J.J. Thomson, K.G. Estabrook, Enhancement of stimulated Brillouin scattering due to reflection of light from plasma critical surface. Phys. Rev. Lett. 43, 924 (1979)

    Article  ADS  Google Scholar 

  15. R.Y. Chiao, C.H. Townes, B.P. Stoicheff, Stimulated Brillouin scattering and generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592 (1964)

    Article  ADS  Google Scholar 

  16. VYu. Bychenkov, W. Rozmus, V.T. Tikhonchuk, Stimulated Raman scattering in non-Maxwellian plasmas. Phys. Plasmas 4, 1481 (1997)

    Article  ADS  Google Scholar 

  17. H.A. Salih, S.T. Mahmoud, R.P. Sharma, M. Rafat, Stimulated Raman scattering of relativistic laser beam in plasmas. Phys. Plasmas 12, 042302 (2005)

    Article  ADS  Google Scholar 

  18. D. Biskamp, H. Welter, Stimulated Raman scattering from plasmas irradiated by normally and obliquely incident laser Light. Phys. Rev. Lett. 34, 312 (1975)

    Article  ADS  Google Scholar 

  19. H.A. Salih, S.T. Mahmoud, R.P. Sharma, Stimulated Raman scattering of relativistic laser beam in plasmas. Phys. Plasmas 12, 042302 (2005)

    Article  ADS  Google Scholar 

  20. R. Nuter, Ph. Korneev, V.T. Tikhonchuk, Raman scattering of a laser beam carrying an orbital angular momentum. Phys. Plasmas 29, 062101 (2022)

    Article  ADS  Google Scholar 

  21. B. Gaur, P. Rawat, G. Purohit, Mitigation of stimulated Raman backscattering by elliptical laser beam in collisionless plasma. Optik 157, 99 (2018)

    Article  ADS  Google Scholar 

  22. P. Sharma, Stimulated Raman scattering of ultra intense hollow Gaussian beam in relativistic plasma. Laser and Part. Beams 33, 489 (2015)

    Article  ADS  Google Scholar 

  23. P. Rawat, R. Gauniyal, G. Purohit, Growth of ring ripple in a collisionless plasma in relativistic-ponderomotive regime and its effect on stimulated Raman backscattering process. Phys. Plasmas 21, 062109 (2014)

    Article  ADS  Google Scholar 

  24. D. Anderson, M. Bonnedal, M. Lisak, Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  Google Scholar 

  25. D. Anderson, M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  26. N. Gupta, Self focusing and axial phase modulation of laser beams carrying orbital angular momentum in collisionless plasmas. Opt. and Quant. Electron 53, 121 (2021)

    Article  Google Scholar 

  27. L. Sa, J. Vieira, Self-focusing of multiple interacting Laguerre-Gauss beams in Kerr media. Phys. Rev. A 100, 013836 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., AK, A., Johari, R. et al. Stimulated Raman scattering of self-focused Laguerre–Gaussian laser beams in axially inhomogeneous plasma. J Opt 53, 883–891 (2024). https://doi.org/10.1007/s12596-023-01201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01201-1

Keywords

Navigation