Skip to main content
Log in

Colorless poly(vinyl pyrrolidone) hydrogel contact lenses synergized with silver nanoparticles

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Biocompatible polymers such as poly(vinyl pyrrolidone) (PVP) are used to prepare hydrogels for biomedical applications, optical applications, cosmetic and smart medical contact lenses, and many other applications. However, the commercial PVP lenses available today are optically poor, and wearers of PVP medical contact lenses typically experience spherical, coma, astigmatism, and chromatic aberrations due to light dispersion when the pupil is opened at 2.50 mm. In this work, three contact lenses were prepared by doping PVP hydrogel with 0.1%, 0.5%, and 1% by weight of laboratory-manufactured silver nanoparticles (Ag NPs). This work demonstrates the evaluation of vision correction through each lens and the effect of changing the concentration of Ag NPs on its refractive index. The simulation included the design and simulation of an aberrated human eye based on the Liou and Brennan model and the insertion of the contact lenses for vision correction using the ZEMAX optical design program. The resulting refractive index of one PVP-Ag lens was relatively high at 532 nm = 1.545, leading the lens to guide light rays into a small spot of 3.983 µm root mean square and a highest image contrast (lowest MTF curve degradation) of 0.863 ± 0.027 at 20 cycles/mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. N. Tahhan, T.J. Naduvilath, C. Woods, E. Papas, Review of 20 years of soft contact lens wearer ocular physiology data. Contact Lens Anterior Eye 45(1), 1–18 (2022). https://doi.org/10.1016/j.clae.2021.101525

    Article  Google Scholar 

  2. N. Efron, Contact Lens Practice E-Book, 3rd edn. (Elsevier, Amsterdam, 2016)

    Google Scholar 

  3. K.R. Steele, H. Wagner, N. Lai, A.B. Zimmerman, Gas-permeable contact lenses and water exposure: practices and perceptions. Optom. Vis. Sci. 98(3), 258–265 (2021). https://doi.org/10.1097/OPX.0000000000001660

    Article  Google Scholar 

  4. R. Sinha, V.K. Dada, Evolution of contact lenses, in Textbook of Contact Lenses, JP Medical Ltd (2017), 3–10

  5. J.S. Wolffsohn et al., CLEAR—evidence-based contact lens practice. Contact Lens Anterior Eye 44(2), 368–397 (2021). https://doi.org/10.1016/j.clae.2021.02.008

    Article  Google Scholar 

  6. D.Y. Kim, H. Park, Y.I. Park, J.H. Lee, Polyvinyl alcohol hydrogel-supported forward osmosis membranes with high performance and excellent pH stability. J. Ind. Eng. Chem. 99, 246–255 (2021). https://doi.org/10.1016/j.jiec.2021.04.040

    Article  Google Scholar 

  7. M. Contardi et al., Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.128144

    Article  Google Scholar 

  8. P.J. Bora, A.G. Anil, P.C. Ramamurthy, Y.H. Lee, Chemically room temperature crosslinked polyvinyl alcohol (PVA) with anomalous microwave absorption characteristics. Macromol. Rapid Commun. 42(10), 2000763 (2021). https://doi.org/10.1002/marc.202000763

    Article  Google Scholar 

  9. P. Boonsuk, K. Kaewtatip, S. Chantarak, A. Kelarakis, C. Chaibundit, Super-tough biodegradable poly(vinyl alcohol)/poly(vinyl pyrrolidone) blends plasticized by glycerol and sorbitol. J. Appl. Polym. Sci. 135(26), 1–8 (2018). https://doi.org/10.1002/app.46406

    Article  Google Scholar 

  10. N. Rescignano et al., PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr. Polym. 99, 47–58 (2014). https://doi.org/10.1016/j.carbpol.2013.08.061

    Article  Google Scholar 

  11. F.A. Maulvi et al., Novel poly(vinylpyrrolidone)-coated silicone contact lenses to improve tear volume during lens wear: in vitro and in vivo studies. ACS Omega 5(29), 18148–18154 (2020). https://doi.org/10.1021/acsomega.0c01764

    Article  Google Scholar 

  12. M.S.B. Husain, A. Gupta, B.Y. Alashwal, S. Sharma, Synthesis of PVA/PVP based hydrogel for biomedical applications: a review. Energy Sources Part A Recovery Util. Environ. Effects 40(20), 2388–2393 (2018). https://doi.org/10.1080/15567036.2018.1495786

    Article  Google Scholar 

  13. D. Kharaghani et al., Development of antibacterial contact lenses containing metallic nanoparticles. Polym. Test. (2019). https://doi.org/10.1016/j.polymertesting.2019.106034

    Article  Google Scholar 

  14. L. Mohammed Shaker, A.A. Alamiery, M. Takriff, W. Nor Roslam Wan Isahak, Nano-titanium oxide in polymeric nano-titanium oxide in polymeric contact lenses: short communication. Nanomanufacturing 2(3), 71–81 (2022). https://doi.org/10.3390/nanomanufacturing2030006

    Article  Google Scholar 

  15. B. Cai, T. Kaino, O. Sugihara, Sulfonyl-containing polymer and its alumina nanocomposite with high Abbe number and high refractive index. Opt. Mater. Express 5(5), 1210 (2015). https://doi.org/10.1364/OME.5.001210

    Article  ADS  Google Scholar 

  16. A. Sung, T. Kim, Physical properties of ophthalmic hydrogel polymer containing zinc oxide nanoparticles. J. Chosun Nat. Sci. 6(2), 76–81 (2013). https://doi.org/10.13160/ricns.2013.6.2.76

    Article  ADS  Google Scholar 

  17. I. Armentano et al., Nanocomposites based on biodegradable polymers. Materials (Basel) 11(5), 1–27 (2018). https://doi.org/10.3390/ma11050795

    Article  Google Scholar 

  18. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1), 1–15 (2020). https://doi.org/10.3390/molecules25010112

    Article  Google Scholar 

  19. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  20. H. Mirzajani, F. Mirlou, E. Istif, R. Singh, L. Beker, Powering smart contact lenses for continuous health monitoring: recent advancements and future challenges. Biosens. Bioelectron. 197, 113761 (2022). https://doi.org/10.1016/j.bios.2021.113761

    Article  Google Scholar 

  21. H. Boulaiz et al., Nanomedicine: application areas and development prospects. Int. J. Mol. Sci. 12(5), 3303–3321 (2011). https://doi.org/10.3390/ijms12053303

    Article  Google Scholar 

  22. A.J. Clasky, P.Z. Chen, W. Brooks, K. McCabe, F.X. Gu, Polymer co-coating of gold nanoparticles enables their integration into contact lenses for stable, selective ocular light filters. Adv. Mater. Interfaces 9(30), 1–11 (2022). https://doi.org/10.1002/admi.202201549

    Article  Google Scholar 

  23. J. Kopeĉek, Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. Part A Polym. Chem. 47(22), 5929–5946 (2009). https://doi.org/10.1002/pola.23607

    Article  ADS  Google Scholar 

  24. L.M. Shaker, A.A. Al-Amiery, A.A.H. Kadhum, M.S. Takriff, Manufacture of contact lens of nanoparticle-doped polymer complemented with zemax. Nanomaterials 10(10), 1–11 (2020). https://doi.org/10.3390/nano10102028

    Article  Google Scholar 

  25. L.M. Shaker, A. Alamiery, M. Takriff, W.N.R. Wan-Isahak, Novel blue-wavelength-blocking contact lens with Er3+/TiO2 nps: manufacture and characterization. Nanomaterials 11(9), 1–12 (2021). https://doi.org/10.3390/nano11092190

    Article  Google Scholar 

  26. W.J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd edn. (McGraw Hill, New York, 2007)

    Google Scholar 

  27. J.M. Geary, Introduction to Lens Design With Zemax, 2nd edn. (Willmann-Bell, Richmond, 2002)

    Google Scholar 

  28. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in Kolloidchemie Ein Lehrbuch. ed. by R. Zsigmondy (Springer, Berlin, 1912), pp.387–409. https://doi.org/10.1007/978-3-662-33915-2_7

    Chapter  Google Scholar 

  29. D.A. Atchison, L.N. Thibos, Optical models of the human eye. Clin. Exp. Optom. 99(2), 99–106 (2016). https://doi.org/10.1111/cxo.12352

    Article  Google Scholar 

  30. H.L. Liou, N.A. Brennan, Anatomically accurate, finite model eye for optical modeling. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14(8), 1684–1695 (1997). https://doi.org/10.1364/josaa.14.001684

    Article  ADS  Google Scholar 

  31. S. Dua, U.R. Acharya, E.Y.K. Ng, Computational Analysis of the Human Eye with Applications (World Scientific, Singapore, 2011)

    Book  Google Scholar 

  32. G. Westheimer, Image quality in the human eye. Opt. Acta Int. J. Opt. 17(9), 37–41 (1970). https://doi.org/10.1080/713818355

    Article  Google Scholar 

  33. R.E. Fischer, B. Tadic-Galeb, Optical System Design (McGraw-Hill, New York, 2000)

    Google Scholar 

  34. K. Okitsu, UV–VIS spectroscopy for characterization of metal nanoparticles formed from reduction of metal ions during ultrasonic irradiation, in UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. ed. by C. Kumar (Springer, Berlin, 2013), pp.151–177

    Chapter  Google Scholar 

  35. K.C. Lee, S.J. Lin, C.H. Lin, C.S. Tsai, Y.J. Lu, Size effect of Ag nanoparticles on surface plasmon resonance. Surf. Coat. Technol. 202(22–23), 5339–5342 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.080

    Article  Google Scholar 

  36. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145(1–2), 83–96 (2009). https://doi.org/10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  37. H. Feng, Z. Feng, L. Shen, A high resolution solid-state n.m.r. and d.s.c. study of miscibility and crystallization behaviour of poly(vinyl alcohol) poly(N-vinyl-2-pyrrolidone) blends. Polymer (Guildf) 34(12), 2516–2519 (1993). https://doi.org/10.1016/0032-3861(93)90581-T

    Article  Google Scholar 

  38. M. Kalloniatus, C. Luu, Visual acuity by Michael Kalloniatis and Charles Luu, in The Organization of the Retina and Visual System. ed. by R. Nelson, E. Fernandez (Webvision, Mudgeeraba, 2007)

    Google Scholar 

  39. B.D. Guenther, D.G. Steel, Encyclopedia of Modern Optics (Academic Press, Cambridge, 2018), pp.1–5

    Google Scholar 

  40. R.M. Hammer, B.A. Holden, Spherical aberration of aspheric contact lenses on eye. Optom. Vis. Sci. 71(8), 522–528 (1994). https://doi.org/10.1097/00006324-199408000-00006

    Article  Google Scholar 

  41. N. Hampp, C. Dams, T. Badur, H. Reinhardt, nanoparticles for enhancing the refractive index of hydrogels for ophthalmological applications. Proc. SPIE 10078, 100780I (2017). https://doi.org/10.1117/12.2256296

    Article  Google Scholar 

  42. M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater. 2013, 1–11 (2013). https://doi.org/10.1155/2013/897043

    Article  Google Scholar 

  43. S. Marcos, S.A. Burns, P.M. Prieto, R. Navarro, B. Baraibar, Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes. Vis. Res. 41(28), 3861–3871 (2001). https://doi.org/10.1016/S0042-6989(01)00133-X

    Article  Google Scholar 

  44. K. Koev et al., Application of silver antibacterial nanolayers for hard contact lenses coating. IOP Conf. Ser. Mater. Sci. Eng. 618(1), 012028 (2019). https://doi.org/10.1088/1757-899X/618/1/012028

    Article  MathSciNet  Google Scholar 

  45. L.M. Shaker, A.H. Al-hamdani, A.A. Al-amiery, Nano-particle doped polymers to improve contact lenses optical quality. Int. J. Nanoelectron. Mater. 13(1), 19–30 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AA and LMS did conceptualization and methodology and writing—original draft preparation; LMS gave software and done formal analysis; MST and WNRWI validated the study; AA and SA performed investigation; WNRWI and SA have given resources; AA and WKAl-A done writing—review and editing; MST and WNRWI visualized the study; AA, MST and WNRWI did supervision; AA, MST and WNRWI contributed to project administration; WNRWI and WKAl-A performed funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Lina M. Shaker or Ahmed Alamiery.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, L.M., Abdulhadi, S., Al-Azzawi, W.K. et al. Colorless poly(vinyl pyrrolidone) hydrogel contact lenses synergized with silver nanoparticles. J Opt 53, 847–856 (2024). https://doi.org/10.1007/s12596-023-01176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01176-z

Keywords

Navigation