Skip to main content
Log in

Surface plasmon optical sensor based on multilayer metal-coated nanorods resonator

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

An optical sensor of seven metal-coated nanorods periodically distributed on a circular ring is designed. Based on the T-matrix method, scattering properties of periodic structures are investigated theoretically. The numerical result shows three resonant peaks in the scattering cross section (SCS) when the gap between the nanorods is tiny. The values of three resonant peaks vary linearly with the refractive index in the cavity formed by the nanorods. By adding gain/loss material into the inner dielectric nanorods, the peak and Q values of resonance frequencies increase and enhance sensor sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), J. Opt. Soc. Am, 31(3), 213 (1941)

  2. V. Jandieri, P. Meng, K. Yasumoto, et al. Scattering of light by gratings of metal-coated circular nanocylinders on a dielectric substrate, J. Opt. Soc. Am A, 32(7), 1384 (2015)

  3. V. Jandieri, K. Yasumoto, Y. Liu, Directivity of radiation of a dipole source coupled to cylindrical electromagnetic bandgap structures, J. Opt. Soc. Am. B, 29(9), 2622 (2012)

  4. H.A. Atwater, The promise of plasmonics. Sci. Am. 296(4), 56–63 (2007)

    Article  Google Scholar 

  5. H.P. Ho, S.Y. Wu, M. Yang et al., Application of white light-emitting diode to surface plasmon resonance sensors. Sens. Actuat B-Chem. 80(2), 89 (2001)

    Article  Google Scholar 

  6. J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Sens. ActuatB-Chem. 54(1–2), 3 (1999)

    Article  Google Scholar 

  7. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Left 84(23), 4780 (2004)

    Article  ADS  Google Scholar 

  8. X. Luo, T., Ishihara, Sub-100-nm photolithography based on plasmon resonance. JPN J. Appl. Phys. 43(6S), 4017 (2004)

  9. E. Kretschmann, H. Raether, Radiative decay of non radiative surface plasmons excited by light. Z Natureforsch A 23(12), 2135 (1968)

    Article  ADS  Google Scholar 

  10. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007)

    Article  ADS  Google Scholar 

  11. O. Hess, J.B. Pendry, S.A. Maier et al., Active nanoplasmonic metamaterials. Nat. Mater. 11(7), 573 (2012)

    Article  ADS  Google Scholar 

  12. Y. Fang, Y. Zhang, J.J. Wang, Resonance-dependent extraordinary reflection and transmission in PC-symmetric layered structure. Opt. Commun. 407, 255 (2018)

    Article  ADS  Google Scholar 

  13. Y. Fang, Y. Zhang, J. Xia, Reversible unidirectional reflection and absorption of PT-symmetry structure under electro-optical modulation. Opt. Commun. 416, 25 (2018)

    Article  ADS  Google Scholar 

  14. Z. Ruan, S. Fan, Superscattering of light from subwavelength nanostructures. Phys. Rev. Left 105(1), 013901 (2010)

    Article  ADS  Google Scholar 

  15. K. Yasumoto, H. Toyama, T. Kushta, Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique. IEEE T Antenn Propag. 52(10), 2603 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. V. Jandieri, K. Yasumoto, Analysis of scattering from a finite array of circular cylinders using a model of layered cylindrical arrays. Opt. Commun. 284(18), 4109 (2011)

    Article  ADS  MATH  Google Scholar 

  17. C.P. Yu, H.C. Chang, Electromagnetic Theory and Applications for Photonic Crystals (Marcel Dekker/CRC Press Inc, Boca Raton, Florida, 2006)

    Google Scholar 

  18. Y.C. Zhang, Y.T. Fang, Gas sensor based on parity-time symmetry structure. J. Nanophoton. 12(3), 036005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Phang, A. Vukovic, S.C. Creagh, et al, Parity-time symmetric coupled microresonators with a dispersive gain/loss, OPT EXPRESS, 23(9) (2015)

  20. S. Phang, A. Vukovic, H. Susanto et al., Impact of dispersive and saturable gain/loss on bistability of nonlinear parity-time Bragg gratings. Opt. Left 39(9), 2603 (2014)

    Article  ADS  Google Scholar 

  21. A.Z. Zaky, H.A. Aly, Highly Sensitive Salinity and Temperature Sensor Using Tamm Resonance. Plasmonics 16, 2315 (2021)

    Article  Google Scholar 

  22. X.M. Zhang, G.X. Yu, R.Y. Cao, H.H. Wang, Surface plasma resonance characteristics of cylindrical multilayer metal-coated silicon nanoparticles. Microw. Opt. Techin. Let 62(9), 2806 (2020)

    Article  Google Scholar 

  23. X.M. Zhang, G.X. Yu, M. Luo, et al, Design of multiple resonant cavities of surface plasmas using multilayered sliver nanorods, Opt Commun, 459 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanxia Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shen, Y., Yu, G. et al. Surface plasmon optical sensor based on multilayer metal-coated nanorods resonator. J Opt 52, 1789–1794 (2023). https://doi.org/10.1007/s12596-023-01154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01154-5

Keywords

Navigation