Skip to main content
Log in

Fabrication of innovative diffraction gratings for light absorption enhancement in silicon thin films for solar cell application

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Light trapping structures are necessary for optimal light absorption in thin-film solar cells for improving its efficiency. Absorption in thin-film solar cells can be improved by revising the geometry of solar cell structure. The diffraction phenomenon is at the heart of spectral research of light. In this article, absorption enhancement in silicon thin-film absorber layer is investigated via optical grating structure. Fabrication of an effective light-trapping through engineering metallic grating structures realized to enlarge the optical path length of light within the absorber layer. Grating fabrication technology was employed by using a laser beam to write patterns on bare metallic chromium films. Circular patterns were written using polar coordinate laser writer. These particular efforts showed increased absorption of light in the ultraviolet (UV) and near infrared (NIR) part of the solar spectrum and that is effective in achieving performance close to 98% absorption at shorter wavelengths, i.e., from 400 to 500 nm with a 2-μm grating period. Thus, these fabricated grating structures can be used as efficient backside reflector in thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16
Fig.17

Similar content being viewed by others

References

  1. L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. 4(1), 1548305 (2019)

    Google Scholar 

  2. M.S. Uddin, C. Vijayan, J.K. Rath, Optical modelling of photonic and geometrical structures used for light management in thin-film solar cells.". Mater. Today: Proc. 39, 1974–1977 (2021)

    Google Scholar 

  3. V.A. Belyakov, Diffraction optics of complex-structured periodic media (Springer-Verlag p, New York, 1992), p.265

    Book  Google Scholar 

  4. F.I.M. Fazli, M.K. Ahmad, C.F. Soon, N. Nafarizal, A.B. Suriani, A. Mohamed, M.H. Mamat, M.F. Malek, M. Shimomura, K. Murakami, Dye-sensitized solar Cell using pure anatase TiO2 annealed at different temperatures. Optik 140, 1063–1068 (2017)

    Article  ADS  Google Scholar 

  5. K.R. Catchpole, A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells. J. Appl. Phys. 102(1), 013102 (2007)

    Article  ADS  Google Scholar 

  6. C. Eisel, C.E. Nebel, M. Stutzmann, Periodic light coupler gratings in amorphous thin film solar cells. J. Appl. Phys. 89(12), 7722–7726 (2001)

    Article  ADS  Google Scholar 

  7. N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, H. Stiebig, Thin-film solar cells with periodic grating coupler. Thin Solid Films 451, 397–401 (2004)

    Article  ADS  Google Scholar 

  8. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, J. Müller, Silicon thin-film solar cells with rectangular-shaped grating couplers. Prog. Photovoltaics Res. Appl. 14(1), 13–24 (2006)

    Article  Google Scholar 

  9. C. Haase, H. Stiebig, Optical properties of thin-film silicon solar cells with grating couplers. Prog. Photovolt: Res Appl 14(7), 629–641 (2006)

    Article  Google Scholar 

  10. S.I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, D.-Y. Kim, Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells. Appl. Phys. Lett. 91(17), 173509 (2007)

    Article  ADS  Google Scholar 

  11. Q. Chen, G. Hubbard, P.A. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting. Appl. Phys. Lett. 94(26), 263118 (2009)

    Article  ADS  Google Scholar 

  12. J.K. Hyun, C. Ahn, H. Kang, H.J. Kim, J. Park, K.H. Kim, C.W. Ahn, B.J. Kim, S. Jeon, Soft elastomeric nanopillar stamps for enhancing absorption in organic thin-film solar cells. Small 9(3), 369–374 (2013)

    Article  Google Scholar 

  13. R.S. Dubey, S. Saravanan, S. Kalainathan, Performance evaluation of thin film silicon solar cell based on dual diffraction grating. Nanoscale Res. Lett. 9, 1–5 (2014)

    Article  Google Scholar 

  14. U.W. Paetzold, E. Moulin, B.E. Pieters, U. Rau, R. Carius, Optical simulations of microcrystalline silicon solar cells applying plasmonic reflection grating back contacts. J. Photo. Energy 2(1), 027002 (2012)

    Article  Google Scholar 

  15. X. Yang, S. Zhou, D. Wang, J. He, J. Zhou, X. Li, P. Gao, J. Ye, Light trapping enhancement in a thin film with 2D conformal periodic hexagonal arrays. Nanoscale Res. Lett. 10(1), 1–9 (2015)

    Article  ADS  Google Scholar 

  16. A. Mellor, I. Tobías, A. Martí, A. Luque, A numerical study of Bi-eriodic binary diffraction gratings for solar cell applications. Sol. Energy Mater. Sol. Cells 95(12), 3527–3535 (2011)

    Article  Google Scholar 

  17. V.P. Veiko, R.A. Zakoldaev, E.A. Shakhno, D.A. Sinev, Z.K. Nguyen, A.V. Baranov, K.V. Bogdanov et al., Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser. Opt. Mater. Express 9(6), 2729–2737 (2019)

    Article  ADS  Google Scholar 

  18. V.V. Cherkashin, E.G. Churin, V.P. Korolkov, V.P. Koronkevich, A.A. Kharissov, A.G. Poleshchuk, and J.H. Burge, 1997, May. Processing parameter optimization for thermochemical writing of DOEs on chromium films. In diffractive and holographic device technologies and applications IV (Vol. 3010, pp. 168–179). International Society for Optics and Photonics.

  19. V. Koronkevich, A. Poleshchuk, E. Churin, Y. Yurlov, Selective etching of laser-exposed chromium thin films. Sov. Tech. Phys. Lett. 11, 57 (1985)

    Google Scholar 

  20. Z.H. Chen, N. Qiao, Y. Yang, H. Ye, S. Liu, W. Wang, Y. Wang, Enhanced broadband electromagnetic absorption in silicon film with photonic crystal surface and random gold grooves reflector. Sci. Rep. 5(1), 12794 (2015)

    Article  ADS  Google Scholar 

  21. A.G. Poleshchuk ,Fabrication and application of diffractive optical elements. In Sixth International Symposium on Precision Engineering Measurements and Instrumentation 2010 Dec 31 (Vol. 7544, p. 75443L). International Society for Optics and Photonics.

  22. S.N. Khonina, D.A. Savelev, I.A. Pustovoĭ, P.G. Serafimovich, Diffraction at binary microaxicons in the near field. J. Opt. Technol. 79(10), 626–631 (2012)

    Article  Google Scholar 

  23. S.N. Khonina, S.V. Karpeev, S.V. Alferov, D.A. Savelyev, J. Laukkanen, J. Turunen, Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. J. Opt. 15(8), 085704 (2013)

    Article  ADS  Google Scholar 

  24. S. Juneja, S. Sudhakar, S.N. Khonina, R.V. Skidanov., A.P. Porfirevb, O.Y. Moissev, N.L. Kazanskiy, and S. Kumar, 2016, March. Nanocrystalline silicon thin films and grating structures for solar cells. In Optical Technologies for Telecommunications 2015 (Vol. 9807, p. 98070F). International Society for Optics and Photonics.

  25. A. Saif, F. Jannat, M.A.K. Khan, M.A. Alim, Numerical development of eco-friendly Cs2TiBr 6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225, 165765 (2020)

    Google Scholar 

  26. S.D. Brotherton, D.J. McCulloch, J.B. Clegg, J.P. Gowers, Excimer-laser-annealed poly-Si thin-film transistors. IEEE Trans. Electron Devices 40(2), 407–413 (1993)

    Article  ADS  Google Scholar 

  27. H.N. Liu, Y.L. He, F. Wang, S. Grebner, Effect of grain boundary states on CPM spectra of hydrogenated nanocrystalline silicon. J. Non-Cryst. Solids 2(164), 1005–1008 (1993)

    Article  ADS  Google Scholar 

  28. S.M. Gage, J. Hajto, S. Reynolds, W.K. Choi, M.J. Rose, P.G. LeComber, A.J. Snell, A.E. Owen, Anomalous high zero bias resistance in metal-amorphous silicon-metal structures. J. Non-Cryst. Solids 115(1–3), 171–173 (1989)

    Article  ADS  Google Scholar 

  29. A. Mohanty, P.K. Ray, M. Viswavandya, S. Mohanty, P.P. Mohanty, Experimental analysis of a standalone solar photo voltaic cell for improved power quality. Optik 171, 876–885 (2018)

    Article  ADS  Google Scholar 

  30. J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, JA Anna Selvan, N. Pellaton Vaucher et al. "On the way towards high efficiency thin film silicon solar cells by the “Micromorph” concept." MRS Online Proceedings Library Archive 420 (1996).

  31. S. Ray, S. Mukhopadhyay, T. Jana, Studies on microstructure of silicon thin films and its effect on solar cells. Sol. Energy Mater. Sol. Cells 90(5), 631–639 (2006)

    Article  Google Scholar 

  32. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt.: Res. Appl. 25(7), 668–676 (2017)

    Article  Google Scholar 

  33. S. Juneja, S. Sudhakar, K. Lodhi, M. Sharma, S. Kumar, Kinetics of recovery of light induced defects on thermal annealing towards stability of microcrystalline silicon films. Adv. Sci. Lett. 20(7–8), 1499–1503 (2014)

    Article  Google Scholar 

  34. S. Juneja, S. Sudhakar, A.K. Srivastava, S. Kumar, Morphology and micro-structural studies of distinct silicon thin films deposited using very high frequency plasma enhanced chemical vapor deposition process. Thin Solid Films 619, 273–280 (2016)

    Article  ADS  Google Scholar 

  35. S. Juneja, M. Sharma, S. Kumar, Study of infra-red spectroscopy on bonding environment and structural properties of nanocrystalline silicon thin films grown by VHF-PECVD process. SILICON 11(4), 1925–1937 (2019)

    Article  Google Scholar 

  36. S. Juneja, S. Sudhakar, J. Gope, S. Kumar, Mixed phase silicon thin films grown at high rate using 60 MHz assisted VHF-PECVD technique. Mater. Sci. Semicond. Process. 1(40), 11–19 (2015)

    Article  Google Scholar 

  37. S.Juneja, SD Poletayev, S Fomchenkov, SN Khonina, RV Skidanov, NL Kazanskiy. Reactive ion etching of indium-tin oxide films by CCl4-based Inductivity Coupled Plasma. InJournal of Physics: Conference Series 2016 (Vol. 741, p. 012105).

  38. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, Light trapping in thin-film silicon solar cells with submicron surface texture. Opt. Express 17(25), 23058–23065 (2009)

    Article  ADS  Google Scholar 

  39. Y.H. Ye, C.C. Chin, D.W. Huang, Enhanced conversion efficiency for solar cells with periodic grating of nanowires. IEEE Photonics J. 5(5), 8400709 (2013)

    Article  ADS  Google Scholar 

  40. J.C.K. Tay, B.T. Wong, K.H. Chong, The impact of anti-reflective coating and optical bandpass interference filter on solar cell electrical-thermal performance. J. Mech. Eng. Sci. 15(1), 7807–7823 (2021)

    Article  Google Scholar 

  41. V. Pavelyev, V. Osipov, D. Kachalov, S. Khonina, W. Cheng, A. Gaidukeviciute, B. Chichkov, Diffractive optical elements for the formation of “light bottle” intensity distributions. Appl. Opt. 51(18), 4215–4218 (2012)

    Article  ADS  Google Scholar 

  42. C. Liu, G. Su, F. Gou, F. Zhao, X. Zhi, Z. Zhang, Absorption enhancement of thin film solar cells using back binary metallic grating. Opt. Quant. Electron. 46, 1365–1372 (2014)

    Article  Google Scholar 

  43. Y. Chen, J. Wang, J. Lu, W. Zheng, J. Gu, S.E. Yang, X. Gao, Microcrystalline silicon grown by VHF PECVD and the fabrication of solar cells. Sol. Energy 82(11), 1083–1087 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Director, CSIR-NPL, New Delhi, for their kind support and encouragement. One of the authors Sucheta Juneja acknowledges CSIR, Govt. of India, for providing Research Associateship (R.A.). The author (SJ) would like to acknowledge the Samara National Research University, Russia, for fabricating grating structures and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneja, S., Pavelyev, V.S., Khonina, S.N. et al. Fabrication of innovative diffraction gratings for light absorption enhancement in silicon thin films for solar cell application. J Opt 52, 1758–1774 (2023). https://doi.org/10.1007/s12596-023-01127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01127-8

Keywords

Navigation