Skip to main content
Log in

Study of single and symmetrical D-shaped optical fiber sensor based on gold nanorods

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) sensor is considered a breakthrough optical phenomenon. SPR sensors have significantly advanced in both technology and sensor applications. Plasmonic sensors are based on plasmonic material, affecting sensor sensitivity results. The sensitivity parameter is used to determine how the possibility of a variable of interest is affected by the surrounding environment. This parameter plays a vital role in any plasmonic sensor due to its strong impact on the results and the final decision of sensor performance. A single and dual symmetrical D-shape fiber-based plasmonic sensor was theoretically studied. The effect of the polishing depth and the dopant concentrations of GeO2 was investigated. A single D-shaped optical fiber shows that the highest peak loss was 2 dB/cm at the polishing depth of 36.5 μm and almost 0.0 dB/cm loss at 33.5 μm polishing depth. The resonance wavelength at the maximum loss was 1.47 μm. The highest wavelength sensitivity (1500 nm/RIU) for D-shaped fiber (D-SF) design at a maximum loss with a dopant concentration of 19.3% of GeO2 for the core and 50 nm thickness of Au layer. While the highest wavelength sensitivity (150 nm/RIU) for dual symmetrical D-shaped optical fiber design at a maximum loss with a dopant concentration of 19.3% of GeO2 for the core and 50 nm thickness of the Au layer. Nanorods were applied for a dual SD-SF sensor, which was successful at 1.20 and 1.21 refractive indices; the maximum sensitivity was 5000 nm/RIU with a dopant concentration of 15.3% of GeO2 for the core. To the best of our knowledge, there has been no report for analyzing dual symmetrical D-shaped optical fiber. Also, the comparison between single and symmetrical D-shaped optical fiber has not yet been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.H. Khalid, N.A. Al-jaber, F.M. Abbas, Fabrication and characterization study of surface plasmon resonance (SPR) based on Cu-nanoparticles optical fiber sensor. Eng. Technol. J. 33(9), 1731–1740 (2015)

    Google Scholar 

  2. S.M. Tariq, M.A. Fakhri, U. Hashim, Fiber optics for sensing applications in a review. Key Eng. Mater. 911, 65–76 (2022)

    Article  Google Scholar 

  3. A.A. Alwahib, Study the effects of gathering multi conditions on D-shaped optical fiber sensor-based surface plasmon resonance. Plasmonics (2022). https://doi.org/10.21203/rs.3.rs-1488236/v1

    Article  Google Scholar 

  4. S.R. Shafeeq, E.T. Salim, M.J. AbdulRazzaq, Niobium pentoxide nanostructures fabricated by the fundamental Q-Switched Nd:YAG PLD under vacuum conditions. Int J Nanoelectron Mater 15, 1–12 (2022)

    Google Scholar 

  5. B.D. Gupta, A. Pathak, V. Semwal, Carbon-based nanomaterials for plasmonic sensors: a review. Sensors 19(16), 3536 (2019)

    Article  ADS  Google Scholar 

  6. N.K. Hassan, M.A. Fakhri, A.W. Abdulwahhab, U. Hashim, Preparation of gold nanoparticles doped zinc oxide using reactive pulsed laser ablation in liquid. Key Eng. Mater. 911, 65–76 (2022)

    Article  Google Scholar 

  7. M.R. Momota, M.R. Hasan, Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. (Amst) 76, 287–294 (2018). https://doi.org/10.1016/j.optmat.2017.12.049

    Article  ADS  Google Scholar 

  8. T.E. Abdulrahman, R.O. Mahdi, E.T. Salim, Synthesis of Nb2O5 nanoparticle by liquid phase laser ablation method. Int. J. Nanoelectron. Mater. 15, 13–25 (2022)

    Google Scholar 

  9. S.K. Mishra, S.N. Tripathi, V. Choudhary, B.D. Gupta, SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuat. 199, 190–200 (2014). https://doi.org/10.1016/j.snb.2014.03.109

    Article  Google Scholar 

  10. R.B. Fadhil, E.T. Salim, W.K. Khalef, F.H. Alsultany, Deposition time effect on LN films properties using chemical bath deposition method without post heat treatment. Int. J. Nanoelectron. Mater. 15, 49–58 (2022)

    Google Scholar 

  11. H.S. Jang, K.N. Park, C.D. Kang, J.P. Kim, S.J. Sim, K.S. Lee, Optical fiber SPR biosensor with sandwich assay for the detection of prostate specific antigen. Opt. Commun. 282, 2827–2830 (2009). https://doi.org/10.1016/j.optcom.2009.03.078

    Article  ADS  Google Scholar 

  12. H.A.A. Abdul-Amir, M.A. Fakhri, A.A. Alwahib, Synthesized of GaN nanostructure using 1064 nm laser wavelength by pulsed laser ablation in liquid. Eng. Technol. J. 40(2), 404–411 (2022). https://doi.org/10.30684/etj.v40i2.2271

    Article  Google Scholar 

  13. A. Yasli, H. Ademgil, S. Haxha, A. Aggoun, Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photonics J. 12(1), 1–15 (2020). https://doi.org/10.1109/JPHOT.2019.2961110

    Article  Google Scholar 

  14. F.A. Mohamed, E.T. Salim, A.I. Hassan, Monoclinic tungsten trioxide (WO3) thin films using spraying pyrolysis: electrical, structural and stoichiometric ratio at different molarity. Dig. J. Nanomater. Biostruct. 17(3), 1029–1043 (2022). https://doi.org/10.15251/DJNB.2022.173.1029

    Article  Google Scholar 

  15. V. Semwal, B.D. Gupta, Highly selective SPR based fiber optic sensor for the detection of hydrogen peroxide. Sens. Actuat. B Chem. 329, 129062 (2021). https://doi.org/10.1016/j.bcra.2022.100061

    Article  Google Scholar 

  16. N.K. Hassan, M.A. Fakhri, E.T. Salim, Physical properties of pure gold nanoparticles and gold doped ZnO nanoparticles using laser ablation in liquid for sensor applications. Eng. Technol. J. 40(2), 422–427 (2022). https://doi.org/10.30684/etj.v40i2.2242

    Article  Google Scholar 

  17. S. Singh, B.D. Gupta, Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration. Sens. Actuat. B Chem. 177, 589–595 (2013). https://doi.org/10.1016/j.snb.2012.11.094

    Article  Google Scholar 

  18. M. Iga, A. Seki, K. Watanabe, Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sens. Actuat. B 106, 363–368 (2005). https://doi.org/10.1016/j.snb.2004.08.017

    Article  Google Scholar 

  19. S.K. Mishra, S. Bhardwaj, B.D. Gupta, Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 15(2), 1235–1239 (2015). https://doi.org/10.1109/JSEN.2014.2356251

    Article  ADS  Google Scholar 

  20. H.S. Ali, M.A. Fakhri, Z. Khalifa, Optical and structural properties of the gold nanoparticles ablated by laser ablation in ethanol for biosensors. J. Phys. Conf. Ser. 1795(1), 012065 (2021). https://doi.org/10.1088/1742-6596/1795/1/012065

    Article  Google Scholar 

  21. B. Li, X. Yan, X. Zhang, F. Wang, S. Li, T. Suzuki, Y. Ohishi, T. Cheng, No-core optical fiber sensor based on surface plasmon resonance for glucose solution concentration and temperature measurement. Opt. Express 29(9), 12930 (2021). https://doi.org/10.1364/oe.423307

    Article  ADS  Google Scholar 

  22. T.E. Abdulrahman, E.T. Salim, R.O. Mahdi, M.H.A. Wahid, Nb2O5 nano and microspheres fabricated by laser ablation. Adv. Nat. Sci. Nanosci. Nanotechnol 13, 045006 (2022). https://doi.org/10.1088/2043-6262/ac99cf

    Article  ADS  Google Scholar 

  23. N.A.M. Zainuddin, M.M. Ariannejad, P.T. Arasu, S.W. Harun, R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. Results Phys. 13, 102255 (2019). https://doi.org/10.1016/j.rinp.2019.102255

    Article  Google Scholar 

  24. M.A. Fakhri, H.D. Jabbar, F.H. Alsultany, E.T. Salim, U. Hashim, Lithium niobate -based sensors: a review. AIP Conf. Proc. 2660, 020124 (2022). https://doi.org/10.1063/5.0107759

    Article  Google Scholar 

  25. R. Slavik, J. Homola, J. Ctyroky, E. Brynda, Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuat. B Chem. 3667, 1–6 (2001). https://doi.org/10.1016/S0925-4005(00)00718-8

    Article  Google Scholar 

  26. M.A. Hassan, B.M. Al-Nedawe, M.A. Fakhri, Embedded optical fiber link interferometer sensors for snapshot surface inspection using the synthetic wavelength technique. Appl. Opt. 60(8), 2339–2347 (2021). https://doi.org/10.1364/ao.417370

    Article  ADS  Google Scholar 

  27. R. Slavík, J. Homola, J. Čtyroký, Single-mode optical fiber surface plasmon resonance sensor. Sens. Actuat. B Chem. 54(1), 74–79 (1999). https://doi.org/10.1016/S0925-4005(98)00314-1

    Article  Google Scholar 

  28. E.T. Salim, A.M. Yahya, A.W. Abdulwahab, Opto-electronic behavior of LN as a dielectric films: Improved using low temperatures treatment. AIP Conf. Proc. 2660, 020130 (2022). https://doi.org/10.1063/5.0107748

    Article  Google Scholar 

  29. N. Cennamo, G.D. Agostino, R. Galatus, L. Bibbò, M. Pesavento, L. Zeni, Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuat. B Chem. 188, 221–226 (2013). https://doi.org/10.1016/j.snb.2013.07.005

    Article  Google Scholar 

  30. A.D. Faisal, W.K. Khalef, E.T. Salim, F. Hamzah-Alsultany, M.H.A. Wahid, Conductivity modification of ZnO NRs films via gold coating for temperature sensor application. Key Eng. Mater. 936, 105–114 (2022). https://doi.org/10.4028/p-25h5n1

    Article  Google Scholar 

  31. C. Liu, J. Wang, F. Wang, W. Su, L. Yang, J. Lv, G. Fu, X. Li, Q. Liu, T. Sun, P.K. Chu, Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt. Commun. 464, 125496 (2020). https://doi.org/10.1016/j.optcom.2020.125496

    Article  Google Scholar 

  32. A.A. Rifat, R. Ahmed, A.K. Yetisen, H. Butt, A. Sabouri, G.A. Mahdiraji, S.H. Yun, F.R.M. Adikan, Photonic crystal fiber based plasmonic sensors. Sens Actuat B Chem. 243, 311–325 (2017). https://doi.org/10.1016/j.snb.2016.11.113

    Article  Google Scholar 

  33. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, P.K. Chu, Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 25(13), 14227–14237 (2017). https://doi.org/10.1364/oe.25.014238

    Article  ADS  Google Scholar 

  34. Q. Liu, B. Yan, J. Liu, U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance. Appl. Phys. Express 12(5), 052014 (2019). https://doi.org/10.7567/1882-0786/ab13bc

    Article  ADS  Google Scholar 

  35. H.A.A. Abdul-Amir, M.A. Fakhri, A.A. Alwahib, Review of GaN optical device characteristics, applications, and optical analysis technology. Mater Today Proc 42, 2815–2821 (2021). https://doi.org/10.1016/j.matpr.2020.12.727

    Article  Google Scholar 

  36. X. Yang, Y. Lu, B. Liu, J. Yao, Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2), 489–496 (2016). https://doi.org/10.1007/s11468-016-0289-z

    Article  Google Scholar 

  37. S.M. Tariq, M.A. Fakhri, E.T. Salim, U. Hashim, F.H. Alsultany, Design of an unclad single-mode fiber-optic biosensor based on localized surface plasmon resonance by using COMSOL Multiphysics 51 finite element method. Appl. Opt. 61(21), 6257–6267 (2022). https://doi.org/10.1364/ao.458175

    Article  ADS  Google Scholar 

  38. S. Chen, C. Lin, Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater. Res. Express 6(5), 056503 (2019). https://doi.org/10.1088/2053-1591/ab009d

    Article  ADS  Google Scholar 

  39. M.S. Alwazny, R.A. Ismail, E.T. Salim, Aggregation threshold for Novel Au—LiNbO3 core/shell Nano composite: effect of laser ablation energy fluence. Int. J. Nanoelectron. Mater. 15(3), 223–232 (2022)

    Google Scholar 

  40. Y. Zhang, H. Chen, M. Wang, Y. Liu, X. Fan, Q. Chen, B. Wu, Simultaneous measurement of refractive index and temperature of seawater based on surface plasmon resonance in a dual D-type photonic crystal fiber. Mater. Res. Express 8(8), 085201 (2021). https://doi.org/10.1088/2053-1591/ac1ae7

    Article  ADS  Google Scholar 

  41. M.A. Fakhri, Z.H. Tawfiq, S.A. Adnan, Gold nanoparticles in ethanol deposited on PCF for refractive index sensors. AIP Conf. Proc. 2213(1), 020245 (2020). https://doi.org/10.1063/5.0000213

    Article  Google Scholar 

  42. E.T. Salim, R.A. Ismail, H.T. Halbos, Deposition geometry effect on structural, morphological and optical properties of Nb2O5 nanostructure prepared by hydrothermal technique. Appl. Phys. A 126, 891 (2020). https://doi.org/10.1007/s00339-020-03955-y

    Article  ADS  Google Scholar 

  43. H.A.A. Abdul-Amir, M.A. Fakhri, A.A. Alwahib, E.T. Salim, Optical Investigations of GaN deposited nano films using pulsed laser ablation in ethanol. Int. J. Nanoelectron. Mater. 15(2), 129–138 (2022)

    Google Scholar 

  44. J.G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, F. Chávez, Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end. Sensors (Switzerland) 14(10), 18701–18710 (2014). https://doi.org/10.3390/s141018701

    Article  ADS  Google Scholar 

  45. A.A. Rifat, G.A. Mahdiraji, Y.M. Sua, Y.G. Shee, R. Ahmed, D.M. Chow, Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015). https://doi.org/10.1109/LPT.2015.2432812

    Article  ADS  Google Scholar 

  46. E. Haque, M.A. Hossain, F. Ahmed, Y. Namihira, Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens. J. 18(20), 8287–8293 (2018). https://doi.org/10.1109/JSEN.2018.2865514

    Article  ADS  Google Scholar 

  47. N. Chen, M. Chang, X. Lu, J. Zhou, X. Zhang, Photonic crystal fiber plasmonic sensor based on dual optofluidic channel. Sensors (Switzerland) 19(23), 5150 (2019). https://doi.org/10.3390/s19235150

    Article  ADS  Google Scholar 

  48. Z. Yang, L. Xia, C. Li, X. Chen, D. Liu, A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection. Opt. Commun. 430, 195–203 (2019). https://doi.org/10.1016/j.optcom.2018.08.049

    Article  ADS  Google Scholar 

  49. C. Ren, J. Yuan, K. Wang, B. Yan, X. Sang, C. Yu, Design of photonic crystal fiber refractive index sensor based on surface plasmon resonance effect for the dual-wavebands measurement. Fiber Integr. Opt. 40(4–6), 263–275 (2020). https://doi.org/10.1080/01468030.2020.1830204

    Article  ADS  Google Scholar 

  50. M. Chen, T. Lang, B. Cao, Y. Yu, C. Shen, D-type optical fiber immunoglobulin G sensor based on surface plasmon resonance. Opt. Laser Technol. 131, 106445 (2020). https://doi.org/10.1016/j.optlastec.2020.106445

    Article  Google Scholar 

  51. R. Zakaria et al., Exploration of long-range surface plasmon resonance on multilayer single mode optical fiber with function of MgF2. Opt. Quant. Electron. (2021). https://doi.org/10.21203/rs.3.rs-684898/v1

    Article  Google Scholar 

  52. Y. Wang, S. Li, Y. Guo, S. Zhang, H. Li, Surface plasmon polariton high-sensitivity refractive index sensor based on MMF-MOF-MMF structure. Infrared Phys. Technol. 114, 103685 (2021). https://doi.org/10.1016/j.infrared.2021.103685

    Article  Google Scholar 

  53. X. Wang, H. Deng, L. Yuan, Highly sensitive flexible surface plasmon resonance sensor based on side-polishing helical-core fiber: theoretical analysis and experimental demonstration. Adv. Photonics Res. 2, 2000054 (2021). https://doi.org/10.1002/adpr.202000054

    Article  Google Scholar 

  54. J. Lv, M. Zhu, L. Yang, C. Hu, Z. Yi, J. Wang, X. Song, D. Wang, P.K. Chu, C. Liu, Surface plasmon resonance sensor based on the dual core D-shape photonic crystal fiber for refractive index detection in liquids. Opt. Eng. 61(8), 1–10 (2022). https://doi.org/10.1117/1.OE.61.8.086111

    Article  Google Scholar 

  55. Y. Wang, S. Li, J. Li, H. Chen, High-sensitivity refractive index sensing and broadband tunable polarization filtering characteristics of D-shaped micro-structured fiber with single-layer air-holes and gold film based on SPR. Light. Technol. 40(3), 863–871 (2022)

    Article  Google Scholar 

  56. G. Bai, S. Li, X. Fan, X. Meng, Y. Wang, Z. Gao, Highly sensitive refractive index sensor based on a D-shaped few-mode fiber with silver and graphene film. Optik (Stuttg) 267, 169653 (2022)

    Article  ADS  Google Scholar 

  57. S. Dubey, A. Kumar, A. Kumar, A. Pathak, S.K. Srivastava, A study of highly sensitive d-shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2. Optik (Stuttg) 252, 168527 (2022)

    Article  ADS  Google Scholar 

  58. H. Fang, C. Wei, H. Yang, B. Zhao, L. Yuan, J. Li, D-shaped photonic crystal fiber plasmonic sensor based on silver-titanium dioxide composite micro-grating. Plasmonics 16(6), 2049–2059 (2021). https://doi.org/10.1007/s11468-021-01468-9

    Article  Google Scholar 

  59. M.S. Alwazny, R.A. Ismail, E.T. Salim, High-quantum efficiency of Au@LiNbO3 core–shell nano composite as a photodetector by two-step laser ablation in liquid. Appl. Phys. A 128, 500 (2022). https://doi.org/10.1007/s00339-022-05651-5

    Article  ADS  Google Scholar 

  60. N. Chen, M. Chang, X. Lu, J. Zhou, X. Zhang, Numerical analysis of midinfrared D-shaped photonic-crystal-fiber sensor based on surface-plasmon-resonance effect for environmental monitoring. Appl. Sci. 10(11), 3897 (2020). https://doi.org/10.3390/app10113897

    Article  Google Scholar 

  61. H.S. Ali, M.A. Fakhri, An overview of Au & photonic crystal fiber of sensors. Mater. Sci. Forum 1002, 282–289 (2020)

    Article  Google Scholar 

  62. G. Melwin, K. Senthilnathan, High sensitive D-shaped photonic crystal fiber sensor with V-groove analyte channel. Optik (Stuttg) 213, 164779 (2020). https://doi.org/10.1016/j.ijleo.2020.164779

    Article  ADS  Google Scholar 

  63. N.K. Hassan, M.A. Fakhri, E.T. Salim, M.A. Hassan, Gold nano particles based optical fibers for a different sensor in a review. Mater. Today Proc. 42, 2769–2772 (2021)

    Article  Google Scholar 

  64. D. Wang, W. Li, Q. Zhang, B. Liang, Z. Peng, J. Xu, C. Zhu, J. Li, High-performance tapered fiber surface plasmon resonance sensor based on the graphene/Ag/TiO2 layer. Plasmonics 16(6), 2291–2303 (2021). https://doi.org/10.1007/s11468-021-01483-w

    Article  Google Scholar 

  65. M.N.A.K. Alghurabi, R.S. Mahmood, E.T. Salim, S.F.H. Alhasan, F.G. Khalid, Structure, optical, and morphological investigations of nano copper oxide prepared using RPLD at different laser wavelength effects. Mater. Today Proc. 42, 2497–2501 (2021)

    Article  Google Scholar 

  66. V. Brucker, Elements of optical networking (Vieweg andTeubner Verlag Wiesbaden, Wiesbaden, 2011)

    Book  Google Scholar 

  67. S.A. Adnan, Z.H. Tawfiq, M.A. Fakhri, Gold nanoparticles in liquid based on photonic crystal fiber PCF for sensors application. Defect Diffusion Forum 398, 23–28 (2020)

    Article  Google Scholar 

  68. Q. Wang, X. Zhang, X. Yan, F. Wang, T. Cheng, Design of a surface plasmon resonance temperature sensor with multi-wavebands based on conjoined-tubular anti-resonance fiber. Photonics 8(6), 231 (2021). https://doi.org/10.3390/photonics8060231

    Article  Google Scholar 

  69. A.A. Alwahib, W.H. Muttlak, B.S. Mahdi, A.Z. Mohammed, Corrosion resistance enhancement by laser and reduced graphene oxide-based nano-silver for 1050 aluminum alloy. Surf Interface 20, 100557 (2020). https://doi.org/10.1016/j.surfin.2020.100557

    Article  Google Scholar 

  70. M. Kiroriwal, P. Singal, Design and analysis of highly sensitive solid core gold-coated hexagonal photonic crystal ber sensor based on surface plasmon resonance design and analysis of highly sensitive solid core gold-coated hexagonal photonic crystal fiber sensor based on surface. J. Nanophoton. (2021). https://doi.org/10.21203/rs.3.rs-389085/v1

    Article  Google Scholar 

  71. E.T. Salim, J.A. Saimon, M.K. Abood, M.A. Fakhri, Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis. Opt. Quant. Electron. 52(10), 463 (2020)

    Article  Google Scholar 

  72. A. Zuhayer, M. Abd-Elnaby, S.H. Ahammad, M.M.A. Eid, V. Sorathiya, A.N.Z. Rashed, A gold–plated twin core D–formed photonic crystal fiber (PCF) for ultrahigh sensitive applications based on surface Plasmon resonance (SPR) approach. Plasmonics 17, 2089–2101 (2022). https://doi.org/10.1007/s11468-022-01700-0

    Article  Google Scholar 

  73. Z.H. Tawfiq, M.A. Fakhri, S.A. Adnan, Photonic crystal fibres pcf for different sensors in review. IOP Conf. Ser. Mater. Sci. Eng. 454(1), 012173 (2018). https://doi.org/10.1088/1757-899X/454/1/012173

    Article  Google Scholar 

  74. R.A. Ismail, E.T. Salim, H.T. Halbos, Preparation of Nb2O5 nanoflakes by hydrothermal route for photodetection applications: the role of deposition time. Optik 245, 167778 (2021)

    Article  ADS  Google Scholar 

  75. A.A. Alwahib, S.F. Alhasan, M.H. Yaacob, H.N. Lim, M.A. Mahdi, Surface plasmon resonance sensor based on D-shaped optical fiber using fiberbench rotating wave plate for sensing pb ions. Optik (Stuttg) 202, 163724 (2020). https://doi.org/10.1016/j.ijleo.2019.163724

    Article  ADS  Google Scholar 

  76. D.A. Mohammed, A. Kadhim, M.A. Fakhri, The enhancement of the corrosion protection of 304 stainless steel using Al2O3films by PLD method. AIP Conf. Proc. 2045(1), 020014 (2018). https://doi.org/10.1063/1.5080827

    Article  Google Scholar 

  77. A.A. Alwahib, Y.M. Kamil, M.H.A. Bakar, M.A. Mahdi, F.H. Suhailin, in Optical Detection of Lead Ion with Surface Plasmon Resonance Configurations. In: 2020 IEEE 8th International Conference on Photonics (ICP), 9–10 (2020), https://doi.org/10.1109/ICP46580.2020.9206481

  78. H.D. Jabbar, M.A. Fakhri, M.J.A. Razzaq, O.S. Dahham, E.T. Salim, Effect of different etching time on fabrication of an optoelectronic device based on GaN/Psi. J. Renew. Mater. 11(3), 1101–1122 (2023). https://doi.org/10.32604/jrm.2023.023698

    Article  Google Scholar 

  79. I.S. Najm, A.A. Alwahib, Study of CuS thin films deposited by PLD simulated for prism based SPR sensor. Eng. Technol. J. 39(06), 936–945 (2021)

    Article  Google Scholar 

  80. E.T. Salim, S.R. Shafeeq, M.J.A. Razzaq, M.A. Fakhri, S.C.B. Gopinath, Photo-activation of Ag chemicals for enhanced Nb2O5 optoelectronic device employing plasmonic effects. Surface Interface 36, 102618 (2023)

    Article  Google Scholar 

  81. J.S. Duque, J.S. Blandon, H. Riascos, Localized Plasmon resonance in metal nanoparticles using Mie theory. J. Phys. Conf. Ser. 850(1), 012017 (2017)

    Article  Google Scholar 

  82. A.A. Alwahib, W.H. Muttlak, A.H. Abdulhadi, Multi-response nanowire grating-coupled surface plasmon resonance by finite element method. Int. J. Nanoelectron. Mater. 12(2), 145–155 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Technology-Iraq for the support this work.

Author information

Authors and Affiliations

Authors

Contributions

Ali A. Alwahib conceived of the presented idea. Sarah Osamah developed the theory and performed the computations. Subash C.B. Gopinath verified the analytical methods. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Ali Abdulkhaleq Alwahib or Makram A. Fakhri.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osamah, S., Alwahib, A.A., Fakhri, M.A. et al. Study of single and symmetrical D-shaped optical fiber sensor based on gold nanorods. J Opt 52, 2048–2058 (2023). https://doi.org/10.1007/s12596-023-01119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01119-8

Keywords

Navigation