Skip to main content
Log in

Design of a multiwavelength optical buffer for optical networks by using a 1D defect ternary photonic multilayer structures

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, a multiwavelength optical buffer is proposed for optical communication networks. This buffer is based on 1D defect ternary photonic multilayer structure. This buffer will generate different delay times for different wavelengths. The wavelength to be buffered by this buffer can be changed and controlled by changing the temperature of the defect layer. The wavelength range of operation of this buffer can be changed by changing the structural parameters. This same optical buffer can be used for several wavelengths by changing the temperature of the defect layer. It has also been shown that to design a buffer with a different delay time, the thicknesses of the material layers and/or number of periods in this structure can be changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. K.M. Ho, C.T. Chan, C.M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  ADS  Google Scholar 

  4. P.R. Villeneuve, M. Piché, Photonic bandgaps in periodic dielectric structures. Prog. Quantum Electron. 18, 153–200 (1994)

    Article  ADS  Google Scholar 

  5. T.F. Krauss, R.M. De La Rue, S. Brand, Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths. Nature 383, 699–702 (1996)

    Article  ADS  Google Scholar 

  6. R.D. Meade, K.D. Brommer, A.M. Rappe, J.D. Joannopoulos, Existence of a photonic band gap in two dimensions. Appl. Phys. Lett. 61, 495–499 (1992)

    Article  ADS  Google Scholar 

  7. S. Fan, R.F.L. Villeneuve, R.D. Meade, J.D. Joannopoulos, Design of three dimensional photonic crystals at submicron lengthscales. Appl. Phys. Lett. 65, 1466–1468 (1994)

    Article  ADS  Google Scholar 

  8. E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis, K.-M. Ho, Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys. Rev. B 50, 1945–1948 (1994)

    Article  ADS  Google Scholar 

  9. K. Sakoda, Optical properties of photonic crystals (Springer, Berlin, 2004)

    Google Scholar 

  10. M.M. Abadla, N.A. Tabaza, W. Tabaza, N.R. Ramanujam, K.S.J. Wilson, D. Vigneswaran, S.A. Taya, Properties of ternary photonic crystal consisting of dielectric/plasma/ dielectric as a lattice period. Optik 185, 784–793 (2019)

    Article  ADS  Google Scholar 

  11. D.M. El-Amassi, S.A. Taya, D. Vigneswaran, Temperature sensor utilizing a ternary photonic crystal with a polymer layer sandwiched between Si and SiO2 layers. J. Theor. Appl. Phys. 12, 293–298 (2018)

    Article  ADS  Google Scholar 

  12. S.A. Taya, Ternary photonic crystal with left-handed material layer for refractometric application. Opto Electron. Rev. 26, 236–241 (2018)

    Article  ADS  Google Scholar 

  13. K.M. Abohassan, H.S. Ashour, M.M. Abadla, One-dimensional ZnSe/ZnS/BK7 ternary planar photonic crystals as wide angle infrared reflectors. Result Phys. 22, 103882 (2021)

    Article  Google Scholar 

  14. R. Talebzadeh, M. Bavaghar, Tunable defect mode in one-dimensional ternary nanophotonic crystal with mirror symmetry. J. Optoelectron. Nanostruct. 2, 83–92 (2017)

    Google Scholar 

  15. S.K. Awasthi, U. Malaviya, S.P. Ojha, Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material. J. Opt. Soc. Am. B 23, 2566–2571 (2006)

    Article  ADS  Google Scholar 

  16. C.-J. Wu, Y.-H. Chung, B.-J. Syu, T.-J. Yang, Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal. Prog. Electromagn. Res. 102, 81–93 (2010)

    Article  Google Scholar 

  17. D.M. El-Amassi, S.A. Taya, N.R. Ramanujam, D. Vigneswaran, R. Udaiyakumar, Extension of energy band gap in ternary photonic crystal using left-handed materials. Superlattices Microstruct. 120, 353–362 (2018)

    Article  ADS  Google Scholar 

  18. S.K. Awasthi, S.P. Ojha, Design of a tunable optical filter by using one-dimensional ternary photonic band gap material. Prog. Electromagn. Res. M 4, 117–132 (2008)

    Article  Google Scholar 

  19. A. Banerjee, Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures. J. Electromagn. Waves Appl. 24, 1023–1032 (2010)

    Article  ADS  Google Scholar 

  20. A. Banerjee, Enhanced temperature sensing by using one-dimensional ternary photonic band gap structures. Prog. Electromagn. Res. Lett. 11, 129–137 (2009)

    Article  Google Scholar 

  21. A. Banerjee, Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals. Prog. Electromagn. Res. 89, 11–22 (2009)

    Article  Google Scholar 

  22. A. Banerjee, Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures. J. Opt. 48, 262–265 (2019)

    Article  Google Scholar 

  23. A. Banerjee, Design of enhanced sensitivity gas sensors by using 1d defect ternary photonic band gap structures. Indian J. Phys. 94, 535–539 (2020)

    Article  ADS  Google Scholar 

  24. A. Banerjee, Novel applications of one-dimensional photonic crystal in optical buffering and optical time division multiplexing. Optik 122, 355–357 (2011)

    Article  ADS  Google Scholar 

  25. A. Banerjee, Binary number sequence multilayer structure based refractometric optical sensing element. J. Electromagn. Waves Appl. 22, 2439–2449 (2008)

    Article  ADS  Google Scholar 

  26. A. Banerjee, Design of narrowband optical filters using binary number sequence photonic crystals. Int. J. Infrared Millim. Waves 29, 1070–1082 (2008)

    Article  ADS  Google Scholar 

  27. A. Banerjee, Testing multilayer structures for optical filtering in temperature unstable environments. Optik 126, 3728–3730 (2015)

    Article  ADS  Google Scholar 

  28. A. Banerjee, S. Rizvi, Suitability of 1D photonic band gap structures for electrical tuning of transmission spectrum in optical filters. in 2018 International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), (2018) 272–275

  29. A. Banerjee, Design of beam splitters by using 1D defect ternary photonic band gap structures. in Proceedings of Fifth International Conference on Inventive Material Science Applications, (2023) 27–32

  30. A. Banerjee, U. Malaviya, Design of a tunable ultraviolet filter using metallodielectric photonic crystal, in 2007 IEEE Applied Electromagnetics Conference (AEMC), (2007) 1–4

  31. M.G. Daher, S.A. Taya, I. Colak et al., Design of a novel optical sensor for the detection of waterborne bacteria based on a photonic crystal with an ultra-high sensitivity. Opt. Quantum Electron. 54, 108 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudh Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A. Design of a multiwavelength optical buffer for optical networks by using a 1D defect ternary photonic multilayer structures. J Opt 52, 1730–1740 (2023). https://doi.org/10.1007/s12596-022-00992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00992-z

Keywords

Navigation