Skip to main content
Log in

Random laser performance by magneto-plasmonic nanoparticles

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This work aims to control the random laser performance using magnetic-plasmonic nanoparticles including Fe3O4 and Au nanoparticles mixed with the active laser media R6G dye. For this purpose, Au nanoparticles were produced via the electrical exploding wire method and mixed with the Fe3O4 nanoparticles in the dye medium. After characterizing the samples through the transmission electron microscopy and the florescence spectra in the visible region, they were pumped by the second harmonic generation of the Nd: YAG laser where the random lasing action was detected by a spectrometer. These measurements were performed with and without external magnetic field at 35 mT. The results revealed a nice full width at half maximum of random laser efficiency in the samples exposed to the external magnetic field. In addition, using the external magnetic field, the coherency percentage of the random lasing action diminished because of the fixed direction of the magnetic field which was collinear to the cell direction that can affect the coherency loop due to nanoparticles’ arrangement direction in the dye medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Wang, L. Deng, Electrically controlled plasmonic lasing resonances with silver nanoparticles embedded in amplifying nematic liquid crystals. Laser Phys. Lett. 11, 115814–115818 (2014)

    Article  ADS  Google Scholar 

  2. T. Nakamura, T. Takahashi, S. Adachi, Temperature-dependent random lasing from GaAs powders. Laser Reson. Beam Control XII, 75791J (2010)

    Article  Google Scholar 

  3. T. Naruta, T. Akita, Y. Uchida, D. Lisjak, A. Mertelj, N. Nishiyama, Magnetically controllable random laser in ferromagnetic nematic liquid crystals. Opt. Express 27, 24427–24432 (2019)

    Article  ADS  Google Scholar 

  4. C.-Y. Tsai, Y.-M. Liao, W.-C. Liao, Magnetically controllable random lasers. Adv. Mater. Technol. 2, 1700170–1700174 (2017)

    Article  Google Scholar 

  5. H. Kaiju, J. Nishii, K. Sasaki, Magnetic response of random lasing modes in a ZnO nanoparticle film deposited on a NiFe thin fil. Appl. Phys. Lett. 113, 131108–131111 (2018)

    Article  ADS  Google Scholar 

  6. V. Hoang, N.T. Phuong, N. Van Phu, Random Lasers: Characteristics, Applications and Some Research Results. Computational Methods in Science and Technology 2, 47–51 (2010)

    Article  Google Scholar 

  7. R.G.S. El-Dardiry, R. Mooiweer, A. Lagendijk, Experimental phase diagram for random laser spectra. New J. Phys. 14, 1–11 (2012)

    Article  Google Scholar 

  8. S.F. Haddawi, H. Hummud, S.M. Hamidi, Signature of plasmonic nanoparticles in multi-wavelength low power random lasing. Opt. Laser Technol. 121, 105770–105784 (2020)

    Article  Google Scholar 

  9. S. Mujumdar, M. Ricci, R. Torre, D.S. Wiersma, Amplified extended modes in random lasers. Phys. Rev. Lett. 93, 053903–053908 (2004)

    Article  ADS  Google Scholar 

  10. A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007)

    Article  Google Scholar 

  11. A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006)

    Article  ADS  Google Scholar 

  12. J.B. Herzog, M.W. Knight, D. Natelson, Thermoplasmonics: Quantifying plasmonic heating in single nanowires. Nano Lett. 14, 499–503 (2014)

    Article  ADS  Google Scholar 

  13. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, A. Plech, Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J. Chem. Phys 124, 184702–184706 (2006)

    Article  ADS  Google Scholar 

  14. H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–1146 (2009)

    Article  ADS  Google Scholar 

  15. M. Virk, K. Xiong, M. Svedendahl, M. Kall, A.B. Dahlin, A thermal plasmonic sensor platform: Resistive heating of nanohole arrays. Nano Lett. 14, 3544–3549 (2014)

    Article  ADS  Google Scholar 

  16. A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljacic, E.N. Wang, A nanophotonic solar thermophoto voltaicdevice. Nat. Nanotechnol. 9, 126–130 (2014)

    Article  ADS  Google Scholar 

  17. P. Li, B. Liu, Y. Ni, K.K. Liew, J. Sze, S. Chen, S. Shen, Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 27, 4585–4591 (2015)

    Article  Google Scholar 

  18. K.T. Lin, H.L. Chen, Y.S. Lai, C.C. Yu, Y.C. Lee, P.Y. Su, Y.T. Yen, B.Y. Chen, Loading effect–induced broadband perfect absorber based on single-layer structured metal film. Nano Energy 37, 61–73 (2017)

    Article  ADS  Google Scholar 

  19. J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, S.J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R.T. Howe, Z.X. Shen, N.A. Melosh, Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9, 762–767 (2010)

    Article  ADS  Google Scholar 

  20. A. Kosuga, Y. Yamamoto, M. Miyai, A high performance photothermal film with spherical shell-type metallic nanocomposites for solar thermoelectric conversion. Nanoscale 7, 7580–7584 (2015)

    Article  ADS  Google Scholar 

  21. M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmuller, J. Feldmann, Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 7, 7648–7653 (2013)

    Article  Google Scholar 

  22. C.M. Cobley, L. Au, J. Chen, Y. Xia, Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv. 7, 577–587 (2010)

    Article  Google Scholar 

  23. L. Gao, R. Liu, F. Gao, Y. Wang, X. Jiang, X. Gao, Plasmon mediated generation of reactive oxygen species from near infrared light excited gold nanocages for photodynamic therapy in vitro. ACS Nano 8, 7260–7271 (2014)

    Article  Google Scholar 

  24. R. Huschka, J. Zuloaga, M.W. Knight, L.V. Brown, P. Nordlander, N.J. Halas, Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J. Am. Chem. Soc. 133, 12247–12255 (2011)

    Article  Google Scholar 

  25. M.A. Mackey, M.R. Ali, L.A. Austin, R.D. Near, M.A. ElSayed, The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J. Phys. Chem. B 118, 1319–1326 (2014)

    Article  Google Scholar 

  26. Y. Wang, K.C.L. Black, H. Luehmann, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7, 2068–2077 (2013)

    Article  Google Scholar 

  27. J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A.M. Toni, F. Zhang, D. Zhao, Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mat. 25, 3030–3037 (2013)

    Article  Google Scholar 

  28. M.S. Yavuz, Y. Cheng, J. Chen et al., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 8, 935–939 (2009)

    Article  ADS  Google Scholar 

  29. L. Zhou, S. Zhuang, C. He, Y. Tan, Z. Wang, J. Zhu, Self assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 32, 195–200 (2017)

    Article  Google Scholar 

  30. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of Aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393–398 (2016)

    Article  ADS  Google Scholar 

  31. S.H. Tsao, D. Wan, Y.S. Lai, H.M. Chang, C.C. Yu, K.T. Lin, H.L. Chen, White-light-induced collective heating of gold nanocomposite/bombyxmori silk thin films with ultrahigh broadband absorbance. ACS Nano 9, 12045–12059 (2015)

    Article  Google Scholar 

  32. K.T. Lin, H.L. Chen, Y.S. Lai, Filter-free, junctionless structures for color sensing. Nanoscale 8, 16936–16946 (2016)

    Article  Google Scholar 

  33. A.S. Wasfi, H.R. Humud, N.K. Fadhil, Synthesis of core-shell Fe3O4-Au nanoparticles by electrical exploding wire technique combined with laser pulse shooting. Opt. Laser Technol. 111, 720–726 (2019)

    Article  ADS  Google Scholar 

  34. Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/ domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894–9899 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hamidi.

Ethics declarations

Conflict of interest

There is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

A-Jarah, N.H., Wasfi, A.S. & Hamidi, S.M. Random laser performance by magneto-plasmonic nanoparticles. J Opt 52, 1381–1387 (2023). https://doi.org/10.1007/s12596-022-00974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00974-1

Keywords

Navigation