Skip to main content
Log in

SPR-based PCF sensor with embedded silver wires for wide range temperature sensing

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A photonic crystal fiber (PCF) temperature sensor consisting of dual embedded silver wires and based on surface plasmon resonance is designed and investigated by the finite element method. The ionic liquid [BMim] [PF6] and Ag are chosen as the filling liquid and sensitive material, respectively. The properties of the sensors based on the single PCF structure and dual symmetrical PCF structure are determined and discussed. The single PCF structure shows an average spectral sensitivity of 2.033 nm/°C, maximum sensitivity of 3.900 nm/°C, and temperature resolution of 0.0256 °C, whereas the dual symmetrical PCF device has an average spectral sensitivity of 3.166 nm/°C, maximum sensitivity of 5.000 nm/°C, and temperature resolution of 0.0200 °C. In addition, the proposed sensor can realize a extremely wide temperature sensing range of 20–320 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.Y. Fu, S.W. Zhang, H. Chen, J. Weng, Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor. IEEE Sens. J. 15(10), 5478–5482 (2015)

    ADS  Google Scholar 

  2. W.L. Ng, A.A. Rifat, W.R. Wong, G.A. Mahdiraji, F.M. Adikan, A novel diamond ring fiber-based surface plasmon resonance sensor. Plasmonics 13(4), 1165–1170 (2018)

    Google Scholar 

  3. J.B. Lou, T.L. Cheng, S.G. Li, High sensitivity photonic crystal fiber sensor based on dual-core coupling with circular lattice. Opt. Fiber Technol. 48, 110–116 (2019)

    ADS  Google Scholar 

  4. C. Li, B. Yan, J. Liu, Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fber sensor based on surface plasmon resonance. J. Opt. Soc. Am. A 36(10), 1663–1668 (2019)

    ADS  MathSciNet  Google Scholar 

  5. Y. Li, Y. Liu, Z. Liu, Q. Tang, L. Shi, Q. Chen, G. Du, B. Wu, G. Liu, L. Li, Grating assisted ultra-narrow multispectral plasmonic resonances for sensing application. Apex 12, 072002 (2019)

    ADS  Google Scholar 

  6. L.X. Li, Y.Z. Liang, J.Y. Guang, W.L. Cui, X.P. Zhang, J.F. Masso, W. Peng, Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor. Opt. Express 25(22), 26950–26957 (2017)

    ADS  Google Scholar 

  7. W.W. Lam, L.H. Chu, C.L. Wong, Y.T. Zhang, A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sens. Actuat. B Chem 105, 138–143 (2005)

    Google Scholar 

  8. Y. Chen, Z. Huang, F. Yu et al., Photoionization-assisted, high-efficiency emission of a dispersive wave in gas-filled hollow-core photonic crystal fibers[J]. Opt. Express 28(11), 17076–17085 (2020)

    ADS  Google Scholar 

  9. J.L. Han, E.X. Liu, J.J. Liu, Circular gradient-diameter photonic crystal fiber with large mode area and low bending loss. J. Opt. Soc. Am. A 36, 533–539 (2019)

    ADS  Google Scholar 

  10. M. Eid, M. Habib, M. Anower et al., Hollow core photonic crystal fiber (PCF)–Based optical sensor for blood component detection in terahertz spectrum[J]. Braz. J. Phys. 51(4), 1017–1025 (2021)

    ADS  Google Scholar 

  11. J. Tian, C. Xu, S. Cui et al., A photonic crystal fiber-based biosensor with quasi-D-shaped layout and ITO-graphene combination[J]. Plasmonics 16(5), 1451–1460 (2021)

    Google Scholar 

  12. N. Ayyanar, K.V. Sreekanth, G.T. Raja et al., Photonic crystal fiber-based reconfigurable biosensor using phase change material[J]. IEEE Trans. Nanobiosci. 20(3), 338–344 (2021)

    Google Scholar 

  13. X. Wang, J. Zhu, Y. Xu et al., A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure[J]. Chin. Phys. B 30(2), 024207 (2021)

    ADS  Google Scholar 

  14. Z. Yan, X. Lu, W. Du et al., Ultraviolet graphene ultranarrow absorption engineered by lattice plasmon resonance[J]. Nanotechnology 32(46), 465202 (2021)

    Google Scholar 

  15. J. Chen, H. Nie, C. Tang et al., Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials[J]. Appl. Phys. Express 12(5), 052015 (2019)

    ADS  Google Scholar 

  16. H.W. Lee, M.A. Schmidt, H.K. Tyagi, L.P. Sempere, P.S. Fussell, Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93, 111102 (2008)

    ADS  Google Scholar 

  17. B. Han, Y.N. Zhang, E. Siyu et al., Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Opt. Laser Technol. 113, 46–51 (2019)

    ADS  Google Scholar 

  18. H. Liu, H. Wang, C. Chen et al., Highly sensitive and temperature-compensated fiber bending sensing based on directional resonance coupling in photonic crystal fibers. Opt. Fiber Technol. 47(25), 164–171 (2019)

    ADS  Google Scholar 

  19. Y. Wang, Q. Huang, W. Zhu et al., Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film: erratum[J]. Opt. Express 27(8), 10813–10813 (2019)

    ADS  Google Scholar 

  20. J.J. Butler, A.S. Bowcock, S.R. Sueoka et al., Optical properties of solid-core photonic crystal fibers filled with nonlinear absorbers[J]. Opt. Express 21(18), 20707–20712 (2013)

    ADS  Google Scholar 

  21. H. Li, M.X. Low, R.T. Ako et al., Terahertz waveguides: broadband single-mode hybrid photonic crystal waveguides for terahertz integration on a chip. Adv. Mater. Technol. 5, 2000117 (2020)

    Google Scholar 

  22. R. Ding, S. Hou, D. Wang et al. Novel design of a diamond-core photonic crystal fiber for terahertz wave transmission[C], 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS). IEEE, 1148–1151 (2017)

  23. M.S.A. Gandhi, S. Sivabalan, P.R. Babu et al., Designing a biosensor using a photonic quasi-crystal fiber[J]. IEEE Sens. J. 16(8), 2425–2430 (2016)

    ADS  Google Scholar 

  24. F. Wang, L. Hu, W. Xu et al., Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers. Opt. Express 25(21), 25960 (2017)

    ADS  Google Scholar 

  25. S. Sridevi, J. Mohanraj, M. Valliammai, Refractive Index based Biosensor using Photonic Quasi Crystal Fiber for Detection of Metastasis Tumor cells in brain[C]//2019 Workshop on Recent Advances in Photonics (WRAP). IEEE, 1–3 (2019)

  26. E. Liu, S. Liang, J. Liu, Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber[J]. Superlattices Microstruct. 130, 61–67 (2019)

    ADS  Google Scholar 

  27. Y. Zhao, Z.Q. Deng, H.F. Hu, Fiber-optic SPR sensor for temperature measurement. IEEE Trans. Instrum. Meas. 64(11), 3099–3104 (2015)

    ADS  Google Scholar 

  28. N. Luan, R. Wang, W. Lv, Y. Lu, J. Yao, Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sens. (Basel) 14(9), 16035–16045 (2014)

    ADS  Google Scholar 

  29. A.B. Siddik, S. Hossain, A.K. Paul et al., High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance[J]. Sens. Bio-Sens. Res. 29, 100350 (2020)

    Google Scholar 

  30. M.R. Islam, M.M.I. Khan, F. Mehjabin et al., Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor[J]. Results Phys. 19, 103501 (2020)

    Google Scholar 

  31. X. Yang, Y. Lu, B. Liu, J. Yao, Design of a Tunable Single-PolarizationPhotonic Crystal Fiber Filter With Silver-Coated and Liquid-Filled Air Holes, IEEE Photonics Society, 1943–0655 (2017)

  32. T.S. Krishna, K. Narendra, M. Gowrisankar et al., Physicochemical and spectroscopic studies of molecular interactions of 1-butyl-3-methylimidazolium hexafluorophosphate+ 2-methoxyethanol or 2-ethoxyethanol binary mixtures at temperatures from 298.15 to 323.15 K[J]. J. Molec. Liquids 227, 333–350 (2017)

    Google Scholar 

  33. D.S.H. Wong, J.P. Chen, J.M. Chang et al., Phase equilibria of water and ionic liquids [emim][PF6] and [bmim][PF6][J]. Fluid Phase Equilib. 194, 1089–1095 (2002)

    Google Scholar 

  34. V. Najdanovic-Visak, J.M.S.S. Esperança, L.P.N. Rebelo et al., Phase behaviour of room temperature ionic liquid solutions: an unusually large co-solvent effect in (water+ ethanol)[J]. Phys. Chem. Chem. Phys. 4(10), 1701–1703 (2002)

    Google Scholar 

  35. B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, M. Skorobogatiy, Photonic bandgap fiber-based surface plasmon resonance sensors. Opt. Express 15(18), 11413–11426 (2007)

    ADS  Google Scholar 

  36. C. Du, Q. Wang, H. Hu, Y. Zhao, Highly sensitive refractive index sensor based on four-hole grapefruit microstruc- tured fiber with surface plasmon resonance. Plasmonics 12(6), 1961–1965 (2017)

    Google Scholar 

  37. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, W. Tong, Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express 18(15), 15383–15388 (2010)

    ADS  Google Scholar 

  38. F. Wang, Z. Sun, T. Sun et al., Highly sensitive PCF-SPR biosensor for hyperthermia temperature monitoring[J]. J. Opt. 47(3), 288–294 (2018)

    Google Scholar 

  39. H. Liu, H. Li, Q. Wang et al., Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber[J]. Optik 158, 1402–1409 (2018)

    ADS  Google Scholar 

  40. H. Liu, Y. Wang, C. Tan et al., Simultaneous measurement of temperature and magnetic field based on cascaded photonic crystal fibers with surface plasmon resonance[J]. Optik 134, 257–263 (2017)

    ADS  Google Scholar 

  41. P.B. Bing, Z.Y. Li, J.Q. Yao et al., A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core[J]. Mod. Phys. Lett. B 26(13), 311 (2012)

    Google Scholar 

  42. B.H. An, Y.N. Zhang, X. Wang et al., High-sensitive fiber anemometer based on surface plasmon resonance effect in photonic crystal fiber[J]. IEEE Sens. J. 9, 1–1 (2019)

    Google Scholar 

  43. A. Chen, Z. Yu, B. Dai et al., Highly sensitive detection of refractive index and temperature based on liquid-filled D-shape PCF[J]. IEEE Photonics Technol. Lett. 33(11), 529–532 (2021)

    ADS  Google Scholar 

  44. H. Liang, T. Shen, Y. Feng et al., A surface plasmon resonance temperature sensing unit based on a graphene oxide composite photonic crystal fiber[J]. IEEE Photonics J. 12(3), 1–11 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the Guiding innovation Foundation of Northeast Petroleum University [Grant Numbers 2018YDL-02], Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities [Grant Number 140119001],Natural Science Foundation of Heilongjiang Province [Grant Number E2017010], and City University of Hong Kong Strategic Research Grant (SRG) [Grant Numbers 7005105 and 7005265].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Hu, C., Zhao, Y. et al. SPR-based PCF sensor with embedded silver wires for wide range temperature sensing. J Opt 52, 1197–1205 (2023). https://doi.org/10.1007/s12596-022-00937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00937-6

Keywords

Navigation