Skip to main content
Log in

Wavelength injection locked random fiber laser based on random phase shift fiber Bragg grating

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A stable output can be obtained in a disordered system by injection locked. In this paper, a wavelength injection locked coherent random fiber laser based on the random phase shift fiber Bragg grating is proposed and experimentally proved. A stable single wavelength can be obtained by injecting a wavelength tunable laser into the cavity of random fiber laser with unstable output. The central wavelength drift is less than 0.01 nm and the peak power fluctuation is less than 0.1 dBm within one hour. The injected light power threshold of wavelength locked increases inversely exponentially with the increase of pump power. Different laser modes with stable central wavelength and peak power can be selected by changing the wavelength of injected light within the 0.8 nm reflection bandwidth of the random phase shift fiber Bragg grating. The output power increases linearly with increasing pump power, and the slope efficiency is about 4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.K. Turitsyn, S.A. Babin, A.E. El-Taher, Random distributed feedback fiber laser. Nat. Photon. 4(4), 231–235 (2010)

    Article  ADS  Google Scholar 

  2. R. Ma, Y.J. Rao, W.L. Zhang, Multimode rando fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quant. 25(1), 0900106 (2019)

    Article  Google Scholar 

  3. J.C. Deng, D.V. Churkin, Z.W. Xu, Random fiber laser based on a partial-reflection random fiber grating for high temperature sensing. Opt. Lett. 46(5), 957–960 (2021)

    Article  ADS  Google Scholar 

  4. F. Wang, W. Yu, J. Tian, 5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering. IEEE J. Sel. Top. Quant. 57(21), 6800109 (2021)

    Google Scholar 

  5. T. Feng, M. Jiang, Y. Ren, High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings. OSA Contin. 2(9), 2526 (2019)

    Article  Google Scholar 

  6. H.G. Pan, T.T. Guo, A.L. Zhang, C. Liu, Multi-wavelength switchable random fiber laser based on double Sagnac-loop filter. J. Mod. Optic 68(17), 945–952 (2021)

    Article  ADS  Google Scholar 

  7. Y. Liu, X. Dong, M. Jiang, Multi-wavelength erbium-doped fiber laser based on random distributed feedback. Appl. Phys. B 122(9), 240 (2016)

    Article  ADS  Google Scholar 

  8. J.W. Liu, Z.R. Tong, W.H. Zhang, Tunable multi-wavelength random distributed feedback fiber laser based on dual-pass MZI. Appl. Phys. B 127(2), 1–9 (2021)

    Article  ADS  Google Scholar 

  9. J.W. Liu, Z.R. Tong, W.H. Zhang, Switchable and tunable multi-wavelength erbium-doped random distributed feedback fiber laser based on a compound filter. Optik 241, 167015 (2021)

    Article  ADS  Google Scholar 

  10. P. Huang, X.W. Shu, Z.X. Zhang, Multi-wavelength random fiber laser with switchable wavelength interval. Opt. Express 28(19), 28686–28695 (2020)

    Article  ADS  Google Scholar 

  11. H. Ahmad, M.Z. Samion, A.A. Kamely, Multiwavelength Brillouin generation in Bismuth-doped fiber laser with single- and double-frequency spacing. J. Lightwave Technol. 38(24), 6886–6896 (2020)

    Article  ADS  Google Scholar 

  12. J. Mei, Q. Jiang, S. Liu, Full-open cavity multi-wavelength random fiber laser with double Brillouin frequency spacing. IEEE Photon. Technol. Lett. 32(18), 1215–1218 (2020)

    Article  ADS  Google Scholar 

  13. F. Wang, Y. Gong, Tunable and switchable multi-wavelength Erbium–Brillouin random fiber laser incorporating a highly nonlinear fiber. J. Lightwave Technol. 38(15), 4093–4099 (2020)

    Google Scholar 

  14. O. Shapira, B. Fischer, Localization of light in a random grating array in a single mode fiber. J. Opt. Soc. Am. B 22(12), 2542–2552 (2005)

    Article  ADS  Google Scholar 

  15. N. Lizárraga, N.P. Puente, E.I. Chaikina, Single-mode Er-doped fiber random laser with distributed Bragg grating feedback. Opt. Express 17(2), 395–404 (2009)

    Article  ADS  Google Scholar 

  16. M. Gagné, R. Kashyap, Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating. Opt. Express 17(21), 19067–19074 (2009)

    Article  ADS  Google Scholar 

  17. W.L. Zhang, Y.B. Song, X.P. Zeng, Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings. Photon. Res. 4(3), 102–105 (2016)

    Article  Google Scholar 

  18. A.L. Zhang, L.Y. Hao, B. Geng, Investigation of narrow band random fiber ring laser based on random phase-shift Bragg grating. Opt. Laser Technol. 116, 1–6 (2019)

    Article  ADS  Google Scholar 

  19. W.L. Zhang, R. Ma, C.H. Tang, All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings. Opt. Lett. 40(13), 3181–3184 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Pan, H., Zhang, A. et al. Wavelength injection locked random fiber laser based on random phase shift fiber Bragg grating. J Opt 52, 386–390 (2023). https://doi.org/10.1007/s12596-022-00918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00918-9

Keywords

Navigation