Skip to main content
Log in

Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optical sensors based on asymmetric Mach–Zehnder interferometer (AMZI) are very sensitive to wavelength and temperature, and their shift will affect the accuracy of measured parameters. An optical sensor based on dual AMZIs, which is independent of both optical source wavelength and ambient temperature, is presented. The designed optical sensor consists of two AMZIs cascaded, one as sensing AMZI and the other as compensating AMZI. When the wavelength and temperature change, the sensing curve of the sensing AMZI shifts, and the compensating AMZI reverses the sensing curve where it reaches a new balance without being affected by the wavelength and temperature. In this paper, the center wavelength of the optical source is 1550 nm, the shift is ± 0.1 nm, and the temperature compensation range is 5 ~ 45 °C. After compensation, the error is reduced by 2–3 orders of magnitude, and the maximum sensing error is reduced to < 0.2%. The designed sensor reduces the requirements on the optical source and ambient temperature, and greatly reduces the cost of the optical sensing system. Moreover, this compensation mechanism can be used not only for optical sensors, but also for other optical devices based on interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M.A.A. Ganji, R. Asadi, Theoretical and experimental study of the photoelastic effect in channel waveguides in a diaphragm of LiNbO3. J. Micro/Nanolithogr. MEMS MOEMS 16, 025502 (2017)

    Article  ADS  Google Scholar 

  2. Z.M. Ma, Y.W. Huang, H. Meng, X.G. Huang, Simultaneous measurement of temperature and pressure by utilizing an integrated Mach-Zehnder. J. Lightwave Technol. 35, 4924–4929 (2017)

    Article  ADS  Google Scholar 

  3. L. Schenato, A. Galtarossa, A. Pasuto, L. Palmieri, Distributed optical fiber pressure sensors. Opt. Fiber Technol. 58, 102239 (2020)

    Article  Google Scholar 

  4. M.A.A. Ganji, R. Asadi, Pressure sensor based on polarization rotation in z-cut LiNbO3 optical waveguide. Sens. Actuators, A 280, 521–524 (2018)

    Article  Google Scholar 

  5. Q. Liu, K.W. Kim, Z. Gu, J.S. Kee, M.K. Park, Single-channel Mach-Zehnder interferometric biochemical sensor based on two-lateral-mode spiral waveguide. Opt. Express 22, 27910–27920 (2014)

    Article  ADS  Google Scholar 

  6. V. Rochus, R. Jansen, B. Figeys, F. Verhaegen, R. Rosseel, P. Merken, S. Lenci, and X. Rottenberg, Double MZI Micro-Opto-Mechanical Pressure Sensors for increased sensitivity and pressure range. TRANSDUCERS 2017–19th International Conference on Solid-State Sensors, Actuators and Microsystems, 954–957 (2017)

  7. V. Rochus, R. Jansen, J. Goyvaerts, G. Vandenboch, B. van de Voort, P. Neutens, J. O’Callaghan, H. A. C. Tilmans, and X. Rottenberg, Design of a MZI Micro-Opto-mechanical pressure sensor for a SiN photonics platform. 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 1–5 (2016)

  8. V. Rochus, R. Jansen, J. Goyvaerts, P. Neutens, J. O’Callaghan, X. Rottenberg, Fast analytical model of MZI micro-opto-mechanical pressure sensor. J. Micromech. Microeng 28, 064003 (2018)

    Article  ADS  Google Scholar 

  9. J. Li, Q. Huang, R. Yin, W. Ji, Z. Gong, Z. Song, Customizable optical pressure sensor based on optimized asymmetric Mach-Zehnder interferometer: a review. IEEE Sens. J. 20, 8903–8911 (2020)

    Article  ADS  Google Scholar 

  10. Y. Zhang, J. Zou, J. He, Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering. Opt. Express 26, 26057–26064 (2018)

    Article  ADS  Google Scholar 

  11. N. Xie, H. Zhang, B. Liu, H. Liu, T. Liu, C. Wang, In-line microfiber-assisted Mach-Zehnder interferometer for microfluidic highly sensitive measurement of salinity. IEEE Sens. J. 18, 8767–8772 (2018)

    Article  ADS  Google Scholar 

  12. S. Wang, T. Liu, X. Wang, Y. Liao, J. Wang, J. Wen, Hybrid structure Mach-Zehnder interferometer based on silica and fluorinated polyimide microfibers for temperature or salinity sensing in seawater. Measurement 135, 527–536 (2019)

    Article  ADS  Google Scholar 

  13. B. Chocarro-Ruiz, J. Pérez-Carvajal, C. Avci, O. Calvo-Lozano, M.I. Alonso, D. Maspoch, L.M. Lechuga, A CO2 optical sensor based on self-assembled metal-organic framework nanoparticles. J. Mater. Chem. A 6, 13171 (2018)

    Article  Google Scholar 

  14. K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Botsialas, M. Hoekman, R. Stoffer, G. Jobst, Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation. Opt. Express 22, 8856–8870 (2014)

    Article  ADS  Google Scholar 

  15. S.K. Mishra, B. Zou, K.S. Chiang, Surface-plasmon-resonance refractive-index sensor with cu-coated polymer waveguide. IEEE Photon. Technol. Lett. 28, 1835–1838 (2016)

    Article  ADS  Google Scholar 

  16. J. Hromadka, B. Tokay, R. Correia, S.P. Morgan, S. Korposh, Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sens. Actuators, B Chem. 260, 685–692 (2018)

    Article  Google Scholar 

  17. K.J. Kim, P. Lu, J.T. Culp, P.R. Ohodnicki, Metal-organic framework thin film coated optical fiber sensors: a novel waveguide-based chemical sensing platform. ACS Sens. 3, 386–394 (2018)

    Article  Google Scholar 

  18. M. Bianchetti, M.S. Avila-Garcia, R.I. Mata-Chavez, J.M. Sierra-Hernandez, L.A. Zendejas-Andrade, D. Jauregui-Vazquez, J.M. Estudillo-Ayala, R. Rojas-Laguna, Symmetric and asymmetric core-offset mach-zehnder interferometer torsion sensors. IEEE Photon. Technol. Lett. 29, 1521–1524 (2017)

    Google Scholar 

  19. Y. Xiao, C. Shen, S. Shuai, J. Gong, Z. Liu and Z. Sun, Fiber optic sensor based on MZI to measure urine sugar and micro velocity simultaneously. 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, (2018)

  20. S. Shuai, Y. Xu, Z. Sun, J. Gong, T. Lang and C. Shen, Optic fiber droplet weighing sensor based on Mach-Zehnder interferometer cascaded bowknot type taper. 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, (2018)

  21. W. L. Oon, H. S. Lin, C. H. Pua, J. H. Lim, S. K. Lim, C. F. Ong, and F. A. Rahman, Simultaneous sensing of Mach-Zehnder interferometer optical sensor arrays using spatial division multiplexing. 2018 IEEE Student Conference on Research and Development (SCOReD), Selangor, Malaysia, (2018)

  22. F. Zhang, J. He, X. Xu, B. Du and Y. Wang, Sensitivity-enhanced temperature sensor based on cascaded polymer-infiltrated mach-zehnder interferometers created in graded index fibers. 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 663–667 (2019)

  23. S. Liu, H. Meng, S. Deng, Z. Wei, F. Wang, C. Tan, Fiber humidity sensor based on a graphene-coated core-offset mach-zehnder interferometer. IEEE Sens. Lett. 2, 5000904 (2018)

    Article  Google Scholar 

  24. C. Ma, T. Liu, K. Liu, J. Jiang, Z. Ding, L. Pan, M. Tian, Long-range distributed fiber vibration sensor using an asymmetric dual mach-zehnder interferometers. J. Lightwave Technol. 34, 2235–2239 (2016)

    Article  ADS  Google Scholar 

  25. Y. Xiao, M. Hofmann, Z. Wang, S. Sherman, H. Zappe, Design of all-polymer asymmetric Mach-Zehnder interferometer sensors. Appl. Opt. 55, 3566–3573 (2016)

    Article  ADS  Google Scholar 

  26. D. Niu, D. Zhang, L. Wang, T. Lian, M. Jiang, X. Sun, Z. Li, X. Wang, High-resolution and fast-response optical waveguide temperature sensor using asymmetric Mach-Zehnder interferometer structure. Sens. Actuators, A 299, 111615 (2019)

    Article  Google Scholar 

  27. L. Chen, R.M. Reano, Compact electric field sensors based on indirect bonding of lithium niobate to silicon microrings. Opt. Express 20, 4032–4038 (2012)

    Article  ADS  Google Scholar 

  28. L. Zhang, D. Dai, Silicon subwavelength-grating microdisks for optical sensing. IEEE Photonics Technol. Lett. 31, 1209–1212 (2019)

    Article  ADS  Google Scholar 

  29. Q. Liu and K. S. Chiang, Excitation of long-range surface plasmon mode with long-period waveguide grating for refractive-index sensing. 2009 14th OptoElectronics and Communications Conference, Vienna, 1–2 (2009)

  30. R. Yin, Z. Song, Q. Huang, W. Ji, Y. Luo, F. Liu, H. Yang, Integrated pressure sensor with large range and linear measurement based on SiO2 arrayed waveguide grating (AWG). Measurement 170, 108705 (2021)

    Article  Google Scholar 

  31. A. Booysen, P.L. Swart, B.M. Lacquet, S.J. Spammer, Wavelength insensitive fiber optic sensor based on an axially strained fused coupler. Opt. Eng. 35, 2788–2792 (1996)

    Article  ADS  Google Scholar 

  32. W. Zong, C. Thirstrup, M.H. Sørensen, Optical biosensor with dispersion compensation. Opt. Lett. 30, 1138–1140 (2005)

    Article  ADS  Google Scholar 

  33. G.M. Müller, W. Quan, M. Lenner, L. Yang, A. Frank, K. Bohnert, Fiber-optic current sensor with self-compensation of source wavelength changes. Opt. Lett. 41, 2867–2870 (2016)

    Article  ADS  Google Scholar 

  34. Y. Zhang, J. Zou, Z. Cao, J. He, Temperature-insensitive waveguide sensor using a ring cascaded with a Mach-Zehnder interferometer. Opt. Lett. 44, 299–302 (2019)

    Article  ADS  Google Scholar 

  35. P. Hu, X. Tong, M. Zhao, C. Deng, Q. Guo, Y. Mao, K. Wang, Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation. Opt. Eng. 54, 097104 (2015)

    Article  ADS  Google Scholar 

  36. A. Sešek, J. Trontelj, Temperature compensation of magnetic sensor sensitivity maintaining ratiometric output. Midem Conference 2014, Ljubljana, Slovenia, (2014)

  37. R. Zhang, Y. Duan, Y. Zhao, X. He, Temperature compensation of elasto-magneto-electric (EME) sensors in cable force monitoring using BP neural network. Sensors 18, 2176 (2018)

    Article  ADS  Google Scholar 

  38. Y. Li, Y. Li, F. Li, B. Zhao, Q. Li, The research of temperature compensation for thermopile sensor based on improved PSO-BP Algorithm. Mathematical Problems in Engineering 2015, (2015)

  39. Z. Li, L. Hou, L. Ran, J. Kang, J. Yang, Ultra-sensitive fiber refractive index sensor with intensity modulation and self-temperature compensation. Sensors 19, 3820 (2019)

    Article  ADS  Google Scholar 

  40. Q. Deng, L. Liu, X. Li, Z. Zhou, Arbitrary-ratio 1 × 2 power splitter based on asymmetric multimode interference. Opt. Lett. 39, 5590–5593 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (31430031, 61972232, 12074226), National Key Research and Development Program of China (2017YFC0803403), Teaching Reform Research Project of Shandong University (2020Y023), Fundamental Research Funds of Hisense Broadband. The authors thank Dr. Pamela Holt for editing the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Yin or Lin Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Yin, R., Lu, L. et al. Asymmetric Mach–Zehnder interferometer-based optical sensor with characteristics of both wavelength and temperature independence. J Opt 52, 1008–1021 (2023). https://doi.org/10.1007/s12596-022-00916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00916-x

Keywords

Navigation