Skip to main content
Log in

Study on tool mark-induced performance degradation in optical system: simulation and application of field tracing

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Ultra-precision machining is a class of feasible and efficient technology to generate high-precision optical surfaces. However, the machining tool mark is a significant fact that leads to unwanted diffraction, which will seriously affect the optical performance. In this paper, the relationship between optical performance and tool marks is systematically studied. The results show that the effect of tool marks depends on the ratio of tool feed f and tool nose radius R. Moreover, the effect of tool marks is more severe in the optical system with two mirrors because of superposition. It is proposed that a decreasing ratio of f to R and changing the angle of tool marks between two optical elements can assist to improve the optical performance of the system. Hence, this study provides theoretical guidance to reduce the impact of tool marks and improve the optical performance of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Zhang, S. To, S. Wang, Z. Zhu, A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tool. Manuf. 91, 76 (2015)

    Article  Google Scholar 

  2. X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, X. Hu, Influence of machining errors on form errors of microlens arrays in ultra-precision turning. Int. J. Mach. Tool. Manuf. 96, 80 (2015)

    Article  Google Scholar 

  3. F. Chen, S. Yin, H. Huang, H. Ohmori, Y. Wang, Y. Fan, Y. Zhu, Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int. J. Mach. Tool. Manuf. 50, 480 (2010)

    Article  Google Scholar 

  4. S. Wang, S. To, C.F. Cheung, An investigation into material-induced surface roughness in ultra-precision milling. Int. J. Mach. Tool. Manuf. 68, 607 (2013)

    Google Scholar 

  5. D. Li, B. Wang, Z. Qiao, X. Jiang, Ultraprecision machining of microlens arrays with integrated on-machine surface metrology. Opt. Express 27, 212 (2019)

    Article  ADS  Google Scholar 

  6. S.A.U. Hasan, H. Youn, Y. Park, H. Lee, Imaging performance of an ultra-precision machining-based Fresnel lens in ophthalmic devices. Opt. Express 29, 32068 (2021)

    Article  ADS  Google Scholar 

  7. J. Li, M. Huang, W. Wei, H. Yang, J. Yuan, P. Liu, Study on traceability and suppression method of medium-frequency error for ultra-precision machining optical crystals. Opt. Express 29, 22252 (2021)

    Article  ADS  Google Scholar 

  8. Y. Li, S.M. Gracewski, P.D. Funkenbusch, J.L. Ruckman, Minimizing tool marks in deterministic microgrinding, in: Current Developments in Optical Design and Engineering VII, SPIE 80 (1998)

  9. M. Pohl, R. Börret, Simulation of mid-spatials from the grinding process. J. Eur. Opt. Soc. Rapid Publ. 11, 16010 (2016)

    Google Scholar 

  10. T.K. Gaylord, M. Moharam, Analysis and applications of optical diffraction by gratings. Proc. IEEE 73, 894 (1985)

    Article  Google Scholar 

  11. Z. Li, F. Fang, X. Zhang, X. Liu, H. Gao, Highly efficient machining of non-circular freeform optics using fast tool servo assisted ultra-precision turning. Opt. Express 25, 25243 (2017)

    Article  ADS  Google Scholar 

  12. X. Zhang, Z. Li, G. Zhang, High performance ultra-precision turning of large-aspect-ratio rectangular freeform optics. CIRP Ann. 67, 543 (2018)

    Article  Google Scholar 

  13. Z. Li, X. Liu, F. Fang, X. Zhang, Z. Zeng, L. Zhu, N. Yan, Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment. Opt. Express 26, 7625 (2018)

    Article  ADS  Google Scholar 

  14. H. Zhang, X. Zhang, Z. Li, P. Wang, Z. Guo, Removing single-point diamond turning marks using form-preserving active fluid jet polishing. Precis. Eng. 76, 237–254 (2022)

    Article  Google Scholar 

  15. A. Ghosh, N. Pandey, K.K. Pant, D. Mohan, Subaperture polishing of silicon asphere. J. Opt. 48, 266–271 (2019)

    Article  Google Scholar 

  16. S. Chen, S. Li, H. Hu, G. Tie, C. Guan, Q. Li, Analysis of surface quality and processing optimization of magnetorheological polishing of KDP crystal. J. Opt. 44, 384–390 (2015)

    Article  Google Scholar 

  17. Y. Xing, C. Li, Y. Liu, C. Yang, C. Xue, Fabrication of high-precision freeform surface on die steel by ultrasonic-assisted slow tool servo. Opt. Express 29, 3708–3723 (2021)

    Article  ADS  Google Scholar 

  18. M. Kumar, H.N. Singh Yadav, A. Kumar, M. Das, An overview of magnetorheological polishing fluid applied in nano-finishing of components (2021). https://doi.org/10.1177/25165984211008173

  19. A. Beaucamp, R. Freeman, R. Morton, K. Ponudurai, D. Walker, Removal of diamond-turning signatures on x-ray mandrels and metal optics by fluid-jet polishing. Adv. Opt. Mech. Technol. Telesc. Instrum. Int. Soc. Opt. Photonics 701835 (2008)

  20. J. Guo, W. Feng, H.J.H. Jong, H. Suzuki, R. Kang, Finishing of rectangular microfeatures by localized vibration-assisted magnetic abrasive polishing method. J. Manuf. Process. 49, 204 (2020)

    Article  Google Scholar 

  21. M. Cheng, C.F. Cheung, W.B. Lee, S. To, A study of factors affecting surface quality in ultra-precision raster milling. Key. Eng. Mater. Trans. Tech. Publ. 400 (2007)

  22. L. Li, S.A. Collins, A.Y. Yi, Optical effects of surface finish by ultraprecision single point diamond machining. J. Manuf. Sci. E-T. Asme 132 (2010)

  23. F.-Z. Fang, K.-T. Huang, H. Gong, Z.-J. Li, Study on the optical reflection characteristics of surface micro-morphology generated by ultra-precision diamond turning. Opt. Laser. Eng. 62, 46 (2014)

    Article  Google Scholar 

  24. Z. Zhu, S. To, S. Zhang, Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting. Appl. Opt. 54, 7656 (2015)

    Article  ADS  Google Scholar 

  25. J.M. Tamkin, W.J. Dallas, T.D. Milster, Theory of point-spread function artifacts due to structured mid-spatial frequency surface errors. Appl. Opt. 49, 4814 (2010)

    Article  ADS  Google Scholar 

  26. J.M. Tamkin, T.D. Milster, W. Dallas, Theory of modulation transfer function artifacts due to mid-spatial-frequency errors and its application to optical tolerancing. Appl. Opt. 49, 4825 (2010)

    Article  ADS  Google Scholar 

  27. F. Wyrowski, M. Kuhn, Introduction to field tracing. J. Mod. Opt. 58, 449 (2011)

    Article  MATH  ADS  Google Scholar 

  28. J.A. Shultz, M.A. Davies, T.J. Suleski, Effects of MSF errors on performance of freeform optics: comparison of diamond turning and diamond milling. Freeform Optics. Optical Society of America FT4B. 3 (2015)

Download references

Acknowledgements

This research was funded by the National Key Research and Development Program of China (2017YFA0701200), Tianjin Science and Technology Program (19JCZDJC39100) and National Postdoctoral Program for Innovative Talents of China (BX20190230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, N., Liu, X., Li, Z. et al. Study on tool mark-induced performance degradation in optical system: simulation and application of field tracing. J Opt 52, 365–375 (2023). https://doi.org/10.1007/s12596-022-00914-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00914-z

Keywords

Navigation