Skip to main content
Log in

Iterative phase retrieval with compound amplitude constraint based on cylindrical lens rotation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

For the problem of slow convergence of single amplitude constrained iteration in the traditional multi-plane iterative method and phase ambiguity due to the structure of discontinuous phase, a composite amplitude constrained iterative phase retrieval algorithm based on cylindrical lens rotation is proposed. This algorithm is used to obtain multiple intensity images by changing the rotation angle of the cylindrical lens, and phase retrieval is achieved by using a composite amplitude constraint. This algorithm not only improves the accuracy of phase retrieval and enhances the convergence of iterations, but also overcomes the problem of blurred phase reconstruction of phase-discontinuous objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Zuo, J. Li, J. Sun et al., Transport of intensity equation: a tutorial [J]. Opt. Lasers Eng. 135, 106187 (2020). https://doi.org/10.1016/j.optlaseng.2020.106187

    Article  Google Scholar 

  2. J.M.D. Martino, G.A. Ayubi, E.A. Dalchiele, Single-shot phase recovery using two laterally separated defocused images [J]. Opt. Commun. 293, 1–3 (2013). https://doi.org/10.1016/j.optcom.2012.11.084

    Article  ADS  Google Scholar 

  3. P. Bon, S. Monneret, B. Wattellier, Noniterative boundary-artifact-free wavefront reconstruction from its derivatives [J]. Appl. Opt. 51(23), 5698–5704 (2012). https://doi.org/10.1364/AO.51.005698

    Article  ADS  Google Scholar 

  4. S. Zheng, H. Shangguan, X. Zeng et al., Coherent diffractive imaging via a rotatable cylindrical lens [J]. Opt. Lasers Eng. 124, 105820 (2020). https://doi.org/10.1016/j.optlaseng.2019.105820

    Article  Google Scholar 

  5. J.R. Fienup, Reconstruction of an object from the modulus of its Fourier transform [J]. Opt. Lett. 3(1), 27–29 (1978). https://doi.org/10.1364/OL.3.000027

    Article  ADS  Google Scholar 

  6. J.R. Fienup, Phase retrieval algorithms: a comparison [J]. Appl. Opt. 21(15), 2758–2769 (1982). https://doi.org/10.1364/AO.21.002758

    Article  ADS  Google Scholar 

  7. J.M. Rodenburg, H.M.L. Faulkner, A phase retrieval algorithm for shifting illumination [J]. Appl. Phys. Lett. 85(20), 4795–4797 (2004). https://doi.org/10.1063/1.1823034

    Article  ADS  Google Scholar 

  8. A.M. Maiden, J.M. Rodenburg, An improved ptychographical phase retrieval algorithm for diffractive imaging [J]. Ultramicroscopy 109(10), 1256–1262 (2009). https://doi.org/10.1016/j.ultramic.2009.05.01

    Article  Google Scholar 

  9. A.M. Maiden, M.J. Humphry, J.M. Rodenburg, Ptychographic transmission microscopy in three dimensions using a multi-slice approach [J]. JOSA A 29(8), 1606–1614 (2012). https://doi.org/10.1364/JOSAA.29.001606

    Article  ADS  Google Scholar 

  10. G. Pedrini, W. Osten, Y. Zhang, Wave-front reconstruction from a sequence of interferograms recorded at different planes [J]. Opt. Lett. 30(8), 833–835 (2005). https://doi.org/10.1364/OL.30.000833

    Article  ADS  Google Scholar 

  11. J.A. Rodrigo, H. Duadi, T. Alieva et al., Multi-stage phase retrieval algorithm based upon the gyrator transform [J]. Opt. Expr. 18(2), 1510–1520 (2010). https://doi.org/10.1364/OE.18.001510

    Article  ADS  Google Scholar 

  12. Z. Liu, C. Guo, J. Tan et al., Iterative phase-amplitude retrieval with multiple intensity images at output plane of gyrator transforms [J]. J. Opt. 17(2), 025701 (2015). https://doi.org/10.1088/2040-8978/17/2/025701

    Article  ADS  Google Scholar 

  13. G. Cheng, G. Yong, Z. Yulan et al., Research progress on parameter-changed computational imaging techniques [J]. Laser Optoelectron. Progr. 57(16), 160001 (2020). https://doi.org/10.3788/LOP57.160001

    Article  Google Scholar 

  14. J.A. Rodrigo, T. Alieva, M.L. Calvo, Experimental implementation of the gyrator transform [J]. JOSA A 24(10), 3135–3139 (2007). https://doi.org/10.1364/JOSAA.24.003135

    Article  ADS  Google Scholar 

  15. K.A. Nugent, D. Paganin, Matter-wave phase measurement: a noninterferometric approach[J]. Phys. Rev. A 61(6), 063614 (2000). https://doi.org/10.1103/PhysRevA.61.063614

    Article  ADS  Google Scholar 

  16. Y. Geng, J. Tan, C. Guo et al., Computational coherent imaging by rotating a cylindrical lens [J]. Opt. Expr. 26(17), 22110–22122 (2018). https://doi.org/10.1364/OE.26.022110

    Article  ADS  Google Scholar 

  17. L. Hong-Zhan, J. Yue-Feng, An ameliorated fast phase retrieval iterative algorithm based on the angular spectrum theory [J]. Acta Physica Sinica (2013). https://doi.org/10.7498/aps.62.114203]

    Article  Google Scholar 

Download references

Funding

Natural Science Project of Anhui Higher Education Institutions of China (No.KJ2020ZD02, KJ2019ZD04), Natural Science Foundation of Anhui Province,China (No. 2008085MF209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Zheng, H., Zhang, X. et al. Iterative phase retrieval with compound amplitude constraint based on cylindrical lens rotation. J Opt 52, 431–440 (2023). https://doi.org/10.1007/s12596-022-00912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00912-1

Keywords

Navigation