Skip to main content
Log in

Group III–V element behaviour as a gain material in nano-lasers

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

One of the most promising candidates for meeting nano-footprint expectations and producing intense coherent light in the deep subwavelength region is a plasmonic nano-laser that uses light matter interactions. However, because metal is an important constituent, these lasers face significant challenges in terms of dissipation losses. This paper presents a smaller footprints plasmonic-based nano-laser (nanowire-SiO2-Ag) explored for group III–V elements with the goal of selecting a material that is best suited as a gain material and harnessing maximum optical gain. This plasmonic nano-laser is tested for pump power with varying angle of incidence for GaP, GaSb, and InAs. It claims that when the angle of incidence is 20 and the maximum transmission coefficient is 0.5, this plasmonic nano-laser outperforms with the GaP nanowire. This can be attributed to fact that this serves as most suitable gain material compensating maximum for losses and provides best coupling and energy transfer to surface plasmon polariton along wire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.I. Bozhevolnyi, Plasmonic nanoguides and circuits (Pan Stanford, Singapore, 2008)

    Book  Google Scholar 

  2. H. Maimant, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)

    Article  ADS  Google Scholar 

  3. B. Ellis, M.A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E.E. Haller, J. Vučković, Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photonics 5, 297–300 (2011)

    Article  ADS  Google Scholar 

  4. M. Khajavikhan, A. Simic, M. Katz, J. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012)

    Article  ADS  Google Scholar 

  5. S. McCall, A. Levi, R. Slusher, S. Pearton, R. Logan, Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992)

    Article  ADS  Google Scholar 

  6. J. Hofrichter, O. Raz, L. Liu, G. Morthier, F. Horst, P. Regreny, T.D. Vries, H.J. Dorren, B.J. Offrein, All-optical wavelength conversion using mode switching in InP microdisc laser. Electron Lett. 47, 927–929 (2011)

    Article  ADS  Google Scholar 

  7. D.J. Gargas, M.C. Moore, A. Ni, S. Chang, Z. Zhang, S. Chuang, P. Yang, Whispering gallery mode lasing from zinc oxide hexagonal nanodisks. ACS Nano 4, 3270–3276 (2010)

    Article  Google Scholar 

  8. Y. Lu, J. Kim, H. Chen, C. Wu, N. Dabidian, C.E. Sanders, C. Wang, M. Lu, B. Li, X. Qiu, Plasmonic nanolaser using epitaxially grown silver film. Science 337, 450–453 (2012)

    Article  ADS  Google Scholar 

  9. C. Scofield, S. Kim, J.N. Shapiro, A. Lin, B. Liang, A. Scherer, D.L. Huffaker, Bottom-up photonic crystal lasers. Nano Lett. 11, 5387–5390 (2011)

    Article  ADS  Google Scholar 

  10. C.C. Chen, S. Chang, M. Shih, M. Kuo, J. Huang, H. Kuo, S. Chen, L. Lee, M. Jeng, Large-area ultraviolet GaN-based photonic quasicrystal laser with high-efficiency green color emission of semipolar {10–11} In 0.3 Ga 0.7 N/GaN quantum wells. Appl. Phys. Lett. 102, 011134 (2013)

    Article  ADS  Google Scholar 

  11. Z. Wang, B. Tian, D. VanThourhout, Design of a novel micro-laser formed by monolithic integration of a III–V pillar with a silicon photonic crystal cavity. J. Lightwave Technol. 31, 1475–1481 (2013)

    Article  ADS  Google Scholar 

  12. F. Albert, C. Hopfmann, A. Eberspächer, F. Arnold, M. Emmerling, C. Schneider, S. Höfling, A. Forchel, M. Kamp, J. Wiersig, S. Reitzenstein, Directional whispering gallery mode emission from Limaçon-shaped electrically pumped quantum dot micropillar lasers. Appl. Phys. Lett. 101(2), 021116 (2012). https://doi.org/10.1063/1.4733726

    Article  ADS  Google Scholar 

  13. W. Zhou, Z. Ma, Breakthroughs in nanomembranes and nanomembrane lasers. IEEE Photon. J. 5, 0700707 (2013)

    Article  Google Scholar 

  14. S. Arai, N. Nishiyama, T. Maruyama, T. Okumura, GaInAsP/InP membrane lasers for optical interconnects. IEEE J. Sel. Top. Quantum Electron. 17, 1381–1389 (2011)

    Article  ADS  Google Scholar 

  15. Q. Gu, J. Shane, F. Vallini, B. Wingad, J.S. Smalley, N.C. Frateschi, Y. Fainman, Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers. IEEE J. Quantum Electron. 50, 499–509 (2014)

    Article  ADS  Google Scholar 

  16. K. Ding, M. Hill, Z. Liu, L. Yin, P.V. Veldhoven, C. Ning, Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. Opt. Express 21, 4728–4733 (2013)

    Article  ADS  Google Scholar 

  17. R. Hall, G. Fenner, J. Kingsley, T. Soltys, R. Carlson, Coherent light emission from Ga-As junctions. Phys. Rev. Lett. 9, 366 (1962)

    Article  ADS  Google Scholar 

  18. H. Soda, K. Iga, C. Kitahara, Y. Suematsu, GaInAsP/InP surface emitting injection lasers. Japanese J. Appl. Phys. 18, 2329–2330 (1979)

    Article  ADS  Google Scholar 

  19. V. Sandoghdar, F. Treussart, J. Hare, V.L. Seguin, J. Raimond, S. Haroche, Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. Sect. A At. Mol. Opt. Phys. 54, 1777 (1996)

    Article  Google Scholar 

  20. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, A. Forchel, Whispering gallery mode lasing in electrically driven quantum dot micropillars. Appl. Phys. Lett. 97, 101108–101113 (2010)

    Article  ADS  Google Scholar 

  21. O. Painter, R. Lee, A. Scherer, A. Yariv, J.O. Brien, P. Dapkus, I. Kim, Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    Article  Google Scholar 

  22. F. Albert, C. Hopfmann, A. Eberspacher, F. Arnold, M. Emmerling, C. Schneider, S. Hofling, A. Forchel, M. Kamp, J. Wiersig, Directional whispering gallery mode emission fromLimaçon-shaped electrically pumped quantum dot micropillar lasers. Appl. Phys. Lett. 101, 021116–021124 (2012)

    Article  ADS  Google Scholar 

  23. D. Nguyen, Calculating resonance angle for surface plasmon resonance activation on different metals. Undergrad. J. Math. Model. 11, 1 (2020)

    Google Scholar 

  24. M.P. Nezhad, K. Tetz, Y. Fainman, Gain assisted propagation of surface Plasmon polaritons on planar metallic waveguides. Opt. Express 12, 4072–4079 (2004)

    Article  ADS  Google Scholar 

  25. S.A. Maier, Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides. Opt. Commun. 258, 295–299 (2006)

    Article  ADS  Google Scholar 

  26. B. Ibarlucea, L. Römhildt, F. Zörgiebel, S. Pregl, M. Vahdatzadeh, W.M. Weber, T. Mikolajick, J. Opitz, L. Baraban, G. Cuniberti, Gating Hysteresis as an Indicator for silicon nanowire FET biosensors. Appl. Sci. 8, 950 (2018)

    Article  Google Scholar 

  27. Y. Xiang, J. Chen, D. Zhang, R. Wang, Y. Kuai, F. Lu, X. Tang, P. Wang, H. Ming, M. Rosenfeld, Manipulating propagation constants of silver nanowire plasmonic waveguide modes using a dielectric multilayer substrate. Appl. Sci. 8, 144 (2018)

    Article  Google Scholar 

  28. L. Xu, L. Fang, W. Lai, J. Zhou, L. Shuai, Design of surface plasmon nanolaser based on MoS2. Appl. Sci. 8, 2110 (2019)

    Article  Google Scholar 

  29. S.I. Azzam, A.V. Kildishev, R.M. Ma, C.Z. Ning, R. Oulton, V.M. Shalaev, M.I. Stockman, J.L. Xu, X. Zhang, Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9, 90 (2020)

    Article  ADS  Google Scholar 

  30. S.S. Deka, S. Jiang, S.H. Pan, Y. Fainman, Nanolaser arrays: toward application-driven dense integration. Nanophotonics 10(1), 149–169 (2021)

    Article  Google Scholar 

  31. L. Xu, F. Li, S. Liu, F. Yao, Y. Liu, Low threshold plasmonic nanolaser based on graphene. Appl. Sci. 8, 2186 (2018)

    Article  Google Scholar 

  32. R. Yi, X. Zhang, C. Li et al., Self-frequency-conversion nanowire lasers. Light Sci. Appl. 11, 120 (2022)

    Article  ADS  Google Scholar 

  33. X. Jia, J. Wang, Z. Huang, K. Chu, K. Ren, M. Sun, M. Wang, P. Jin, K.S. LiuQu, Metallic cavity nano-lasers at the visible wavelength based on in situ solution-grown Au-coated perovskite nano-wires. J. Mater. Chem. 10, 680–687 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsimran Jit Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H.J., Jindal, P. & Goyal, A. Group III–V element behaviour as a gain material in nano-lasers. J Opt 52, 60–68 (2023). https://doi.org/10.1007/s12596-022-00910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00910-3

Keywords

Navigation