Skip to main content
Log in

A plasmonics slow light surface plasmon polariton wave in plasmonic photonic crystal structure

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, a Plasmonic Photonic Crystal (PPhC) Waveguide structure is proposed, which is appropriately designed to support dispersionless slow plasmonic wave with group velocities between c/20 and c/50. Two important features of photonic crystals are manifested in the proposed structure; excitation of plasmonic waves and the slow light phenomenon. Introducing a silver stripe in the structure not only supports the propagation of plasmonic waves but also creates a TM bandgap which substantially leads to the creation of slow plasmonic waves. Numerical simulations confirm the plasmonic nature of the excited wave and the strong attenuation in the bandgap region. In addition, our simulations clarify more enhancement of light for the slower guided waves, which originates from the combination of plasmonic waves’ confinement and high interaction of slow light with PPhC. The propagation length and quality factor of the proposed PPhC waveguide are calculated. It is shown that the slowest wave has the maximum enhancement, minimum propagation length, and quality factor. The trade-off between group velocity and enhancement factor can be balanced appropriately in order to have desired propagation length. Demonstration of the TM bandgap and high enhancement factor suggests the use of the proposed structure for the nonlinear application of all-optical devices, particularly soliton propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Raether, Surface plasmons. Springer Tracts Modern Phys. 111, 1 (1988)

    Article  Google Scholar 

  2. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photon. 4(2), 83–91 (2010)

    Article  ADS  Google Scholar 

  3. S.A. Maier, Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J Selected Topics Quant Electron. 12(6), 1214–1220 (2006)

    Article  ADS  Google Scholar 

  4. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083), 508–511 (2006)

    Article  ADS  Google Scholar 

  5. A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin, V.V. Trubaev, Surface electromagnetic waves in optics. Opt. Eng. 31(4), 718–730 (1992)

    Article  ADS  Google Scholar 

  6. G. Wurtz, R. Pollard, A.V. Zayats, Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys. Rev. Lett. 97(5), 057402 (2006)

    Article  ADS  Google Scholar 

  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic crystals. Princeton university press (2011).

  8. T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40(9), 2666 (2007)

    Article  ADS  Google Scholar 

  9. W.C. Lai, S. Chakravarty, X. Wang, C. Lin, R.T. Chen, Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Appl. Phys. Lett. 98(2), 7 (2011)

    Article  Google Scholar 

  10. H. Yan, X. Xu, C.J. Chung, H. Subbaraman, Z. Pan, S. Chakravarty, R.T. Chen, One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt. Lett. 41(23), 5466–5469 (2016)

    Article  ADS  Google Scholar 

  11. C.Y. Lin, X. Wang, S. Chakravarty, B.S. Lee, W. Lai, J. Luo, A.K.Y. Jen, R.T. Chen, Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl. Phys. Lett. 97(9), 194 (2010)

    Article  Google Scholar 

  12. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J.F. Young, S.R. Johnson, J. MacKenzie, T. Tiedje, Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice. Appl. Phys. Lett. 70(11), 1438–1440 (1997)

    Article  ADS  Google Scholar 

  13. S. Peng, G.M. Morris, Resonant scattering from two-dimensional gratings. JOSA A 13(5), 993–1005 (1996)

    Article  ADS  Google Scholar 

  14. A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)

    Article  ADS  Google Scholar 

  15. K. Sakoda, Numerical analysis of the interference patterns in the optical transmission spectra of a square photonic lattice. JOSA B 14(8), 1961–1966 (1997)

    Article  ADS  Google Scholar 

  16. A. Mekis, A. Dodabalapur, R.E. Slusher, J.D. Joannopoulos, Two-dimensional photonic crystal couplers for unidirectional light output. Opt. Lett. 25(13), 942–944 (2000)

    Article  ADS  Google Scholar 

  17. P. Bienstman, S. Assefa, S.G. Johnson, J.D. Joannopoulos, G.S. Petrich, L.A. Kolodziejski, Taper structures for coupling into photonic crystal slab waveguides. JOSA B 20(9), 1817–1821 (2003)

    Article  ADS  Google Scholar 

  18. S. Noda, K. Kitamura, T. Okino, D. Yasuda, Y. Tanaka, Photonic-crystal surface-emitting lasers: review and introduction of modulated-photonic crystals. IEEE J. Sel. Top. Quantum Electron. 23(6), 1–7 (2017)

    Article  Google Scholar 

  19. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki, Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett. 75(3), 316–318 (1999)

    Article  ADS  Google Scholar 

  20. W.L. Barnes, T.W. Preist, S.C. Kitson, J.R. Sambles, Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54(9), 6227 (1996)

    Article  ADS  Google Scholar 

  21. M. Kretschmann, A. Maradudin, Band structures of two-dimensional surface-plasmon polaritonic crystals. Phys. Rev. B 66(24), 245408 (2002)

    Article  ADS  Google Scholar 

  22. T.A. Kelf, Y. Sugawara, J.J. Baumberg, M. Abdelsalam, P.N. Bartlett, Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces. Phys. Rev. Lett. 95(11), 116802 (2005)

    Article  ADS  Google Scholar 

  23. B.J. Frey, D.B. Leviton, T.J. Madison, Temperature-dependent refractive index of silicon and germanium. In Optomech. Technol. Astron. 6273, 790–799 (2006)

    Google Scholar 

  24. J. Li, T.P. White, L. O’Faolain, A. Gomez-Iglesias, T.F. Krauss, Systematic design of flat band slow light in photonic crystal waveguides. Opt. Express 16(9), 6227–6232 (2008)

    Article  ADS  Google Scholar 

  25. M. K. Moghaddam, A.R. Attari, M.M. Mirsalehi (2013) High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide. J European Opt Soc-Rapid Publ, 8

  26. M.D. Settle, R.J.P. Engelen, M. Salib, A. Michaeli, L. Kuipers, T.F. Krauss, Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth. Opt. Express 15(1), 219–226 (2007)

    Article  ADS  Google Scholar 

  27. R.J.P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ikeda, N.F. Van Hulst, K. Asakawa, L. Kuipers, The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14(4), 1658–1672 (2006)

    Article  ADS  Google Scholar 

  28. M. Mulot, A. Säynätjoki, S. Arpiainen, H. Lipsanen, J. Ahopelto, Slow light propagation in photonic crystal waveguides with ring-shaped holes. J. Opt. A: Pure Appl. Opt. 9(9), S415 (2007)

    Article  Google Scholar 

  29. L.H. Frandsen, A.V. Lavrinenko, J. Fage-Pedersen, P.I. Borel, Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Opt. Express 14(20), 9444–9450 (2006)

    Article  ADS  Google Scholar 

  30. S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001)

    Article  ADS  Google Scholar 

  31. L. Novotny, B. Hecht, Principles of nano-optics. Cambridge university press (2012).

  32. R. P. Zaccaria, A. Gopalakrishnan, G. Das, F. Gentile, A. Haddadpour, A. Toma, F. De Angelis, C. Liberale, F. Mecarini, L. Razzari, A. Giugni, Photonic Crystals for Plasmonics: From Fundamentals toSuperhydrophobic Devices. Intech (2012).

  33. S.M. Spillane, T.J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble, Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71(1), 013817 (2005)

    Article  ADS  Google Scholar 

  34. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  35. E. D. Palik, Handbook of optical constants of solids. Academic press, 3 (1998).

  36. X. Yang, A. Ishikawa, X. Yin, X. Zhang, Hybrid photonic−plasmonic crystal nanocavities. ACS Nano 5(4), 2831–2838 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Sadeghi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref Darabi, Z., Sadeghi, M., Kamaly, A. et al. A plasmonics slow light surface plasmon polariton wave in plasmonic photonic crystal structure. J Opt 52, 16–22 (2023). https://doi.org/10.1007/s12596-022-00908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00908-x

Keywords

Navigation