Skip to main content
Log in

Electrical performance analysis of Al0.5Ga0.5 N/AlN/Sapphire-based MSM UV detector for high photocurrent

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Present work analyzes the performance of Al0.5Ga0.5 N/AlN/Sapphire-based MSM (Metal–Semiconductor–Metal) detector for high photocurrent by selecting slightly higher S/(S + W) ratio. As per previous reports, metal electrodes width (W) and spacing between electrodes (S) dimensions of MSM detectors affect number of electrodes. Moreover, photocurrent of MSM detector can be improved by increasing the number of electrodes or fingers. However, for same detector area, the number of fingers gets reduced if S/(S + W) ratio increases. Therefore, there is a need to investigate MSM detector with suitable electrode dimensions to enhance photocurrent but at reasonably lower dark current density. Main motive of present work is to analyze electrical performance of Al0.5Ga0.5 N/AlN/Sapphire MSM detector with 20 electrodes based on double-spacing dimensions. Investigation analysis of detector has been performed using Silvaco-Atlas simulation tool by generating IV characteristics and cut-line plots. In addition, sufficient electrical as well as optical properties of semiconductor materials and carrier statistics models have been utilized. Obtained results have been compared with the experimental results of same Al0.5Ga0.5 N/AlN/Sapphire MSM structure based on same electrode pairs and same thickness of AlGaN and AlN layers. In present work, photocurrent of magnitude around 30 mA has been obtained at 20 V using incident light of wavelength 270 nm and 1 W/cm2 intensity. Dark current density of 5e−08 A/cm2 at 20 V is observed. Therefore, obtained results can be useful for high responsivity, large signal/noise ratio-based applications requiring efficient UV sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data and other supplement data will be available.

References

  1. J. Reverchon, M. Mosca, N. Grandjean, F. Omnes, F. Semond, J. Duboz and L. Hirsch, UV Solid-State Light Emitters and Detectors144, p. 77 (2004)

  2. E. Monroy, F. Calle, E. Munoz, F. Omnes, Appl. Phys. Lett. 74(22), 3401–3403 (1999)

    Article  ADS  Google Scholar 

  3. M. Mello, A. Scarascia, S. De Guido, D. Altamura, V. Tasco, M. De Vittorio and A. Passaseo, SENSORS, 2008 IEEE (2008), pp. 1588–1591

  4. J.L. Reverchon, M. Mosca, N. Grandjean, F. Omnes, F. Semond, J.Y. Duboz, and L. Hirsch, UV Solid-State Light Emitters and Detectors, 2004, pp. 77–92

  5. P. Pramanik, S. Sen, C. Singha, A.S. Roy, A. Das, S. Sen, A. Bhattacharyya, J. Appl. Phys. 120(14), 144502 (2016)

    Article  ADS  Google Scholar 

  6. G. Wang, F. Xie, H. Lu, D. Chen, R. Zhang, Y. Zheng, L. Li, J. Zhou, Journal of vacuum science and technology B. Nanotechnol. Microelectron.: Mater., Process., Meas. Phenom. 31(1), 011202 (2013)

    Google Scholar 

  7. Y. Sun, X. Kang, Y. Zheng, J. Lu, X. Tian, K. Wei, H. Wu, W. Wang, X. Liu, G. Zhang, Electronics 8(5), 575 (2019)

    Article  Google Scholar 

  8. M.S. Shur, A. Zukauskas, eds., (Vol. 144). Springer Science & Business Media (2004)

  9. C. Xie, X.T. Lu, X.W. Tong, Z.X. Zhang, F.X. Liang, L. Liang, L.B. Luo, Y.C. Wu, Adv. Funct. Mater. 29(9), 1806006 (2019)

    Article  Google Scholar 

  10. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, Adv. Electron. Mater. 4(1), 1600501 (2018)

    Article  Google Scholar 

  11. M. Gökkavas, S. Butun, T. Tut, N. Biyikli, E. Ozbay, Photon. Nanostruct.-Fundam. Appl. 5(2–3), 53–62 (2007)

    Article  ADS  Google Scholar 

  12. U. Schühle, and J.F. Hochedez, Observing Photons in Space, (2013), pp. 467–477

  13. R.A. Miller, H. So, T.A. Heuser, D.G. Senesky, arXiv preprint http://arxiv.org/abs/1809.07396 (2018)

  14. J.A. McAdoo, PhD thesis. The College of William and Mary (2000).

  15. M. Brendel, F. Brunner, A. Knigge, and M. Weyers, In Gallium Nitride Materials and Devices XII, vol. 10104, p. 101040J (2017).

  16. A.D. Zebentout, Z. Bensaad, M. Zegaoui, A. Aissat, D. Decoster, Microelectron. J. 42(8), 1006–1009 (2011)

    Article  Google Scholar 

  17. M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, B. Khelifa, Microelectron. J. 38(2), 262–266 (2007)

    Article  Google Scholar 

  18. H. Jiang, N. Nakata, G.Y. Zhao, H. Ishikawa, C.L. Shao, T. Egawa, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. 40(5B), L505 (2001)

    Article  ADS  Google Scholar 

  19. L. Sang, M. Liao, M. Sumiya, Sensors 13(8), 10482–10518 (2013)

    Article  ADS  Google Scholar 

  20. F. Xie, H. Lu, D. Chen, X. Ji, F. Yan, R. Zhang, Y. Zheng, L. Li, J. Zhou, IEEE Sens. J. 12(6), 2086–2090 (2012)

    Article  ADS  Google Scholar 

  21. J.B. Soole, H. Schumacher, IEEE Trans. Electron Devices 37(11), 2285–2291 (1990)

    Article  ADS  Google Scholar 

  22. P. Michalopoulos, PhD thesis. Naval Postgraduate School Monterey California (2002).

  23. S.V. Averin, P.I. Kuznetsov, V.A. Zhitov, N.V. Alkeev, V.M. Kotov, A.A. Dorofeev, N.B. Gladysheva, Tech. Phys. 56(2), 295–297 (2011)

    Article  Google Scholar 

  24. A. Knigge, M. Brendel, F. Brunner, S. Einfeldt, A. Knauer, V. Kueller, U. Zeimer, M. Weyers, Jpn. J. Appl. Phys. 52(8S), 08JF03 (2013)

    Article  Google Scholar 

  25. S. Bütün, Doctoral dissertation, Bilkent University (2011)

  26. C. Yiren, S. Hang, L. Dabing, S. Xiaojuan, L. Zhiming, J. Hong, M. Guoqing, J. Semicond. 32(3), 034005 (2011)

    Article  ADS  Google Scholar 

  27. Y. Li, Y. Liu, G. Yang, B. Bian, J. Wang, Y. Gu, Q. Fan, Y. Ding, X. Zhang, N. Lu, G. Chen, Opt. Express 29(4), 5466–5474 (2021)

    Article  ADS  Google Scholar 

  28. U. Varshney, N. Aggarwal, G. Gupta, Current advances in solar-blind photodetection technology: using Ga2O3 & AlGaN. J. Mater. Chem. C (2022).

  29. N. Aggarwal, G. Gupta, Enlightening gallium nitride-based UV photodetectors. J. Mater. Chem. C 8(36), 12348–12354 (2020)

    Article  Google Scholar 

  30. C.W. Litton, P.J. Schreiber, G.A. Smith, T. Dang, H. Morkoc, Mater. Infrared Detect. 4454, 218–232 (2001)

    Article  ADS  Google Scholar 

  31. J. Li, M. Zhao, X.F. Wang, Physica B 405(3), 996–998 (2010)

    Article  ADS  Google Scholar 

  32. Manual, A.U.S., Device Simulation Software, Version 5.16. 3. R, Silvaco Int., Santa Clara, CA (2010).

  33. S. Xue, J. Xu, X. Li, Selected papers from conferences of the photoelectronic technology committee of the chinese society of astronautics 2014. Part II 9522, 95221N (2015)

    Google Scholar 

  34. S. Xue, J. Xu, X. Li, Conferences of the photoelectronic technology committee of the Chinese society of astronautics 2014. Part II 9522, 95221N (2015)

    Google Scholar 

  35. N. Kermas, B. Djellouli, D. Bouguenna, W. Eshetu, O. Moldovan, B. Iñiguez, J. Comput. Electron. 17(1), 224–229 (2018)

    Article  Google Scholar 

  36. N. Lophitis, A. Arvanitopoulos, S. Perkins, M. Antoniou, Y.K. Sharma, Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications (2018).

  37. N. Vanhove, Master thesis. Eindhoven University of Technology (2005)

  38. H. Kaur, H.J. Kaur, M.K. Hooda, L. Gupta, Mater. Today: Proc. 28, 1879–1886 (2020)

    Google Scholar 

  39. S. Rathkanthiwar, A. Kalra, S.V. Solanke, N. Mohta, R. Muralidharan, S. Raghavan, D.N. Nath, J. Appl. Phys. 121(16), 164502 (2017)

    Article  ADS  Google Scholar 

  40. E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, O. Aytur, IEEE J. Sel. Top. Quantum Electron. 10(4), 742–751 (2004)

    Article  ADS  Google Scholar 

  41. Z. Dong, L. Hai, C. Dun-Jun, R. Fang-Fang, Z. Rong, Z. You-Dou, L. Liang, Chin. Phys. Lett. 30(11), 117301 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was availed for this publication.

Author information

Authors and Affiliations

Authors

Contributions

Dr. MKH and Dr. HJK guided for concepts, proofread and helped in implementation. HK wrote the paper and implemented the concept. Dr. MD helped in manuscript writing.

Corresponding author

Correspondence to Harpreet Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. (The authors have no financial or proprietary interests in any material discussed in this article.)

Ethical approval

Paper is plagiarism-free.

Consent to participate

All authors given consents for the publication of this material.

Consent for publication

All authors accorded their consents for the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Kaur, H.J., Hooda, M.K. et al. Electrical performance analysis of Al0.5Ga0.5 N/AlN/Sapphire-based MSM UV detector for high photocurrent. J Opt 52, 355–364 (2023). https://doi.org/10.1007/s12596-022-00904-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00904-1

Keywords

Navigation