Skip to main content

Advertisement

Log in

Self-compression of elliptical q-Gaussian laser pulse in plasmas with axial density ramp

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Theoretical investigation on self-compression of a laser pulse with q-Gaussian spatial irradiance profile propagating through collisionless plasmas with axial density ramp has been presented. Particularly the dynamics of pulse width, beam widths and axial phase of the laser pulse have been investigated in detail. Effect of the ellipticity of the cross section of the laser pulse also has been incorporated. Using variational theory based on Lagrangian formulation nonlinear partial differential equation (P.D.E) governing the evolution of the pulse envelope has been reduced to a set of coupled ordinary differential equations for the pulse width and beam widths of the laser pulse. The evolution equation for the axial phase of the laser beam has been obtained by the Fourier transform of the amplitude structure of the laser pulse from coordinate space to \((k_x, k_y)\) space. The differential equations so obtained have been solved numerically to envision the effect of laser-plasma parameters on the propagation dynamics of the laser pulse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T.H. Maiman, Stimulated optical radiation in Ruby. Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  2. E. Khalkhal, M.R. Tavirani, M.R. Zali, Z. Akbari, The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci. 10, 104 (2019)

    Article  Google Scholar 

  3. M. Leduc, J. Dugue, J. Simone, Laser cooling, trapping, and Bose-Einstein condensation of atoms and molecules. Phys. Today 71, 18 (2018)

    Article  Google Scholar 

  4. M.W. Berns, Laser Scissors and Tweezers. Sci. Am. 278, 62 (1998)

    Article  Google Scholar 

  5. J.C. Diels, R. Bernstein, K.E. Stahlkopf, X.M. Zhao, Lightning control with lasers. Sci. Am. 277, 50 (1997)

    Article  Google Scholar 

  6. K. Tsipis, Laser weapons. Sci. Am. 245, 51 (1981)

    Article  Google Scholar 

  7. R.M. Wilson, Half of Nobel prize in physics honors the inventors of chirped pulse amplification. Phys. Today 71, 18 (2018)

    Article  ADS  Google Scholar 

  8. G.A. Mourou, D. Umstadter, Extreme light. Sci. Am. 286, 80 (2002)

    Article  ADS  Google Scholar 

  9. J.M. Hopkins, W. Sibbett, Ultrashort-pulse lasers: big payoffs in a flash. Sci. Am. 283, 72 (2000)

    Article  Google Scholar 

  10. A.V. Rocca, Laser applications in manufacturing. Sci. Am. 246, 94 (1982)

    Article  Google Scholar 

  11. G. Padmanabham, R. Bathe, Laser materials processing for industrial applications. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 88, 359 (2018)

  12. M.W. Berns, Laser surgery. Sci. Am. 264, 84 (1991)

    Article  Google Scholar 

  13. M.W. Berns, D.E. Rounds, Cell surgery by laser. Sci. Am. 222, 98 (1970)

    Article  Google Scholar 

  14. N. Gupta, Effect of orbital angular momentum of light on self-action effects of Laguerre Gaussian laser beams in collisionless plasmas. J. Opt. 50, 466 (2021)

    Article  Google Scholar 

  15. N. Gupta, S.B. Bhardwaj, Nonlinear interaction of Bessel-Gauss laser beams with plasmas with axial temperature ramp. J. Opt. Accepted (2022). https://doi.org/10.1007/s12596-022-00831-1

  16. O. Shorokhov, A. Pukhov, I. Kostyukov, Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91, 265002 (2003)

    Article  ADS  Google Scholar 

  17. P. Jha, V. Singh, A.K. Upadhyay, Self-focusing and compression of laser pulses in partially stripped plasma. Phys. Plasmas 18, 073105 (2011)

    Article  ADS  Google Scholar 

  18. S. Kumar, P.K. Gupta, R. Uma, R.P. Sharma, Enhancement in self-compression due to co-propagating laser pulse in plasma. Opt. Commun. 427, 37 (2018)

    Article  ADS  Google Scholar 

  19. M. Olumi, B. Maraghechi, Self-compression of intense short laser pulses in relativistic magnetized plasma. Phys. Plasmas 21, 113102 (2014)

    Article  ADS  Google Scholar 

  20. P.K. Patel, M.H. Key, A.J. Mackinnon, R. Berry, M. Borghesi, D.M. Chambers, H. Chen, R. Clarke, C. Damian, R. Eagleton, R. Freeman, S. Glenzer, G. Gregori, R. Heathcote, D. Hey, N. Izumi, S. Kar, J. King, A. Nikroo, A. Niles, H.S. Park, J. Pasley, N. Patel, R. Shepherd, R.A. Snavely, D. Steinman, C. Stoeckl, M. Storm, W. Theobald, R. Town, R. Van Maren, S.C. Wilks, B. Zhang, Integrated laser-target interaction experiments on the RAL petawatt laser. Plasma Phys. Controlled Fusion 47, B833 (2005)

    Article  Google Scholar 

  21. M. Nakatsutsumi, J.R. Davies, R. Kodama, J.S. Green, K.L. Lancaster, K.U. Akli, F.N. Beg, S.N. Chen, D. Clark, R.R. Freeman, C.D. Gregory, H. Habara, R. Heathcote, D.S. Hey, K. Highbarger, P. Jaanimagi, M.H. Key, K. Krushelnick, T. Ma, A. MacPhee, A.J. MacKinnon, H. Nakamura, R.B. Stephens, M. Storm, M. Tampo, W. Theobald, L. Van Woerkom, R.L. Weber, M.S. Wei, N.C. Woolsey, P.A. Norreys, Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser. New J. Phys. 10, 043046 (2008)

    Article  Google Scholar 

  22. C. Tsallis, Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 39, 337 (2009)

    Article  ADS  Google Scholar 

  23. M. Yadav, D.N. Gupta, S.C. Sharma, Electron plasma wave excitation by a q-Gaussian laser beam and subsequent electron acceleration. Phys. Plasmas 27, 093106 (2020)

    Article  Google Scholar 

  24. A. Sharma, I. Kourakis, Spatial evolution of a q-Gaussian laser beam in relativistic plasma. Laser and Part. Beams 28, 479 (2010)

    Article  ADS  Google Scholar 

  25. N. Gupta, S. Kumar, Generation of second harmonics of q -Gaussian laser beams in collisional plasma with upward density ramp. Laser Phys. 30, 066003 (2020)

    Article  ADS  Google Scholar 

  26. J.F. Lam, B. Lippmann, F. Tappert, Self-trapped laser beams in plasma. Phys. Fluids 20, 1176 (1977)

    Article  ADS  Google Scholar 

  27. N. Gupta, A. Singh, Dynamics of quadruple laser pulses in under-dense plasmas. Cont. to Plasma Phys. 57, 258 (2017)

    Article  ADS  Google Scholar 

  28. D. Anderson, M. Bonnedal, M. Lisak, Nonlinear propagation of elliptically shaped Gaussian laser beams. J. Plasma Phys. 23, 115 (1980)

    Article  ADS  Google Scholar 

  29. D. Anderson, M. Bonnedal, Variational approach to nonlinear self-focusing of Gaussian laser beams,. Phys. Fluids 22, 105 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Feng, H.G. Winful, Physical origin of the Gouy phase shift. Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  31. P. Hariharan, P.A. Robinson, The gouy phase shift as a geometrical quantum effect. J. Mod. Opt. 43, 219 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Johari, R., Bhardwaj, S.B. et al. Self-compression of elliptical q-Gaussian laser pulse in plasmas with axial density ramp. J Opt 52, 175–188 (2023). https://doi.org/10.1007/s12596-022-00891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00891-3

Navigation