Skip to main content
Log in

Casual relationship of entanglement between birefringence beams of light through chiral medium

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The casual relationship between two split rays (left and right) circularly polarized beams through the chiral medium is investigated in this article. Using partial transposition and superposition of bell states to investigate entanglement phenomenon between the left and right circular polarization beams through the negativity of eigenvalues. Measurement of partial transposition shows two fluctuated positive and negative eigenvalues with time flow and space variation. The maximum positive and negative value of \(\pm 0.5\) is investigated with the variation of space, time, and system parameters. The existence of negative eigenvalues pointed out entanglement between the birefringent beams. Fluctuation of positive and negative eigenvalues shows fluctuation between separable and entangled states. The theoretical results may be useful for super-dense coding, quantum cryptography, quantum bits, and quantum teleportation of optical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Schneeloch, C.C. Tison, M.L. Fanto, P.M. Alsing, G.A. Howland, Quantifying entanglement in a 68-billion-dimensional quantum state space. Nat. Commun. 10, 1–7 (2019)

    Article  Google Scholar 

  2. M. Krenn, M. Malik, M. Erhard, A. Zeillinger, Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes. Philos. Trans. R. Soc. A 375, 20150442 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Kelly et al., 2015 State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 6669 (2015)

    Article  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  5. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Leedumrongwatthanakun et al., Programmable linear quantum networks with a multimode fibre. Nat. Photon. 14, 139142 (2020)

    Article  Google Scholar 

  7. H. Defenne, M. Reichert, J.W. Fleischer, Adaptive quantum optics with spatially entangled photon pairs. Phys. Rev. Lett. 121, 233601 (2018)

    Article  ADS  Google Scholar 

  8. D.N. Klyshko, Interference of light and Bell’s theorem. Phys. Usp. 41, 885 (1988)

    Article  ADS  Google Scholar 

  9. A. Zeilinger, Light for the quantum. Entangled photons and their applications: a very personal perspective. Phys. Scr. 92(7), 072501 (2017)

    Article  ADS  Google Scholar 

  10. J. Esteve, C. Gross, A. Weller, S. Giovanazzi, M.K. Oberthaler, Squeezing and entanglement in a Bose–Einstein condensate. Nature (London) 455, 1216 (2008)

    Article  ADS  Google Scholar 

  11. B. Julsgaard, A. Kozhekin, E.S. Polzik, Experimental long-lived entanglement of two macroscopic objects. Nature (London) 413, 400 (2001)

    Article  ADS  Google Scholar 

  12. T.S. Iskhakov, I. Agafonov, M. Chekhova, G. Leuchs, Polarization-entangled light pulses of 10(5) photons. Phys. Rev. Lett. 109(15), 150502 (2012)

    Article  ADS  Google Scholar 

  13. P. Sekatski, B. Sanguinetti, E. Pomarico, N. Gisin, C. Simon, Cloning entangled photons to scales one can see. Phys. Rev. A 82(5), 053814 (2010)

    Article  ADS  Google Scholar 

  14. H.S. Eisenberg, G. Khoury, G.A. Durkin, C. Simon, D. Bouwmeester, Quantum entanglement of a large number of photons. Phys. Rev. Lett. 93(19), 193901 (2004)

    Article  ADS  Google Scholar 

  15. B.J. Dalton, Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests. Phys. Scr. 92, 023005 (2017)

    Article  ADS  Google Scholar 

  16. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1, 165171 (2007)

    Article  Google Scholar 

  18. C. Weedbrook, S. Pirandola, R.G. Petron, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, C. Weedbrook, Gaussian quantum information. A. J. Phys. 84(2), 621–669 (2012)

    Google Scholar 

  19. T.E. Northup, R. Blatt, Quantum information transfer using photons. Nat. Photonics 8, 356–363 (2014)

    Article  ADS  Google Scholar 

  20. D. Bouwmeester, The Physics of Quantum Information (Springer, Berlin, 2000), p. 191

    Book  Google Scholar 

  21. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Epping, H. Kampermann, D. Brub, Multi-partite entanglement can speed up quantum key distribution in networks. New J. Phys. 19, 093012 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z. Tu, D.E. Kharzeev, T. Ullrich, Einstein–Podolsky–Rosen paradox and quantum entanglement at subnucleonic scales. Phys. Rev. Lett. 124, 062001 (2020)

    Article  ADS  Google Scholar 

  24. P.-A. Moreau, E. Toninelli, T. Gregory, M.J. Padgett, Imaging with quantum states of light. Nat. Rev. Phys. 1, 367380 (2019)

    Article  Google Scholar 

  25. N.H. Valencia, S. Goel, W. McCutcheon, H. Defienne, M. Malik, Unscrambling entanglement through a complex medium. Nature 16, 1112 (2020)

    Google Scholar 

  26. J. Fan, D. Xiao, T. Lei, X. Yuan, J. Opt. Soc. Am. B 37(11), 3422–3428 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Ul Haq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Haq, I., Khan, R., Zaman, A. et al. Casual relationship of entanglement between birefringence beams of light through chiral medium. J Opt 51, 927–936 (2022). https://doi.org/10.1007/s12596-022-00888-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00888-y

Keywords

Navigation