Skip to main content
Log in

Characteristics of cladding mode-based refractive index sensor using MMF-SMF-MMF configuration

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We report our analytical description to predict and interpret the observed light transmission characteristics through a system of concatenated dissimilar optical fibers having core diameter mismatch while devising cladding mode-based refractive-index sensing devices. The configuration consists of a pair of identical multimode fibers (MMFs) in which a short segment of conventional single-mode fiber (SMF) is spliced as a sensing zone. Because of the core diameter mismatch, the cladding of the SMF guides light and makes the device sensitive to external perturbation/change in refractive index of the surrounding medium. The device can operate at different wavelengths, which makes it attractive for diverse applications. Using our analysis, we evaluate the performance of a few configurations of the sensor and compare the results with those obtained experimentally or known otherwise. We demonstrate that our model is general and can be applied to devise sensor with any transverse profile MMF to explore new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, Fiber optical bragg grating refractometer. Fiber Integr. Opt. 17, 51–62 (1998)

    Article  Google Scholar 

  2. X. Shu, B.A.L. Gwandu, Y. Liu, L. Zhang, I. Bennion, Sampled fibre bragg grating for simultaneous refractive-index and temperature measurement. Opt. Lett. 26, 774–776 (2001)

    Article  ADS  Google Scholar 

  3. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, A fibre bragg grating refractometer. Meas. Sci. Technol. 12, 757–764 (2001)

    Article  ADS  Google Scholar 

  4. G. Laffont, P. Ferdinand, Tilted short-period fibre-bragg-grating induced coupling to cladding modes for accurate refractometry. Meas. Sci. Technol. 12, 765–770 (2001)

    Article  ADS  Google Scholar 

  5. A. Iadiccico, S. Campopiano, A. Cutolo, M. Giordono, A. Cusano, Nonuniform thinned fiber bragg gratings for simultaneous refractive index and temperature measurements. IEEE Photon. Technol. Lett. 17, 1495–1497 (2005)

    Article  ADS  Google Scholar 

  6. T. Takeo, H. Hattori, Optical fiber sensor for measuring refractive index. Jpn. J. Appl. Phys. 21, 1509–1512 (1982)

    Article  ADS  Google Scholar 

  7. J. Zubia, G. Garitaonaindia, J. Arrue, Passive device based on plastic optical fibers to determine the indices of refraction of liquids. Jpn. J. Appl. Phys. 39, 941–946 (2000)

    Google Scholar 

  8. P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett. 30, 1273–1275 (2005)

    Article  ADS  Google Scholar 

  9. J. Villatoro, D. Monzón-Hernández, D. Talavera, High resolution refractive index sensing with cladded multimode tapered optical fibre. Electron. Lett. 40, 106–107 (2004)

    Article  ADS  Google Scholar 

  10. I. Noiseux, W. Long, A. Cournoyer, M. Vernon, Simple fiber-optic based sensors for process monitoring: an application in wine quality control monitoring. Appl. Spectrosc. 58, 1010–1019 (2004)

    Article  ADS  Google Scholar 

  11. D. Monzón-Hernández, J. Villatoro, D. Luna-Moreno, Miniature optical fiber refractometer using cladded multimode tapered fiber tips. Sens. Actuators B Chem. 110, 36–40 (2005)

    Article  Google Scholar 

  12. A.M. Cardenas-Valencia, R.H. Byrne, E.T. Steimle, Development of stripped-cladding optical fiber sensors for continuous monitoring—I. theoretical study of a referencing method for measuring refractive indices of fluids. Sens. Actuators B, Chem. 115, 178–188 (2005)

    Article  Google Scholar 

  13. T. Allsop, R. Reeves, D.J. Webb, I. Bennion, R. Neal, A high sensitivity refractometer based upon a long period grating mach-zehnder interferometer. Rev. Sci. Instrum. 73, 1702–1705 (2002)

    Article  ADS  Google Scholar 

  14. P.L. Swart, Long-period grating Michelson refractometric sensor. Meas. Sci. Technol. 15, 1576–1580 (2004)

    Article  ADS  Google Scholar 

  15. W. Liang, Y. Huang, R.K.L.Y. Xu, A. Yariv, Highly sensitive fiber bragg grating refractive index sensors. Appl. Phys. Lett. 86, 151122 (2005)

    Article  ADS  Google Scholar 

  16. J.F. Ding, A.P. Zhang, L.Y. Shao, J.H. Yan, S. He, Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photon. Technol. Lett. 17, 1247–1249 (2005)

    Article  ADS  Google Scholar 

  17. H. Lee, Y. Liu, S.B. Lee, S.S. Choi, J.N. Jang, Displacements of the resonant peaks of a long-period fiber grating induced by a change of ambient refractive index. Opt. Lett. 22, 1769–1771 (1997)

    Article  ADS  Google Scholar 

  18. H.J. Patrick, A.D. Kersey, F. Bucholtz, Analysis of the response of long period fiber gratings to external index of refraction. J. Lightwave Technol. 16, 1606–1612 (1998)

    Article  ADS  Google Scholar 

  19. V. Bhatia, Applications of long-period gratings to single and multi-parameter sensing. Opt. Expr. 4, 457–466 (1999)

    Article  ADS  Google Scholar 

  20. D.B. Stegall, T. Erdogan, Leaky cladding mode propagation in long period fiber grating devices. IEEE Photon. Technol. Lett. 11, 343–345 (1999)

    Article  ADS  Google Scholar 

  21. X. Shu, L. Zhang, I. Bennion, Sensitivity characteristics of long period fiber gratings. J. Lightwave Technol. 20, 255–266 (1999)

    ADS  Google Scholar 

  22. Z. Wang, S. Ramachandran, Ultrasensitive long-period fiber gratings for broadband modulators and sensors. Opt. Lett. 28, 2458–2460 (2003)

    Article  ADS  Google Scholar 

  23. V.P. Minkovich, J. Villatoro, D. Monzón-Hernández, A.B.S.S. Calixto, L.I. Sotskaya, Holey fiber tapers with resonance transmission for high-resolution refractive index sensing. Opt. Expr. 13, 7609–7619 (2005)

    Article  ADS  Google Scholar 

  24. M. Iga, A. Seki, K. Watanabe, Gold thickness dependence of SPR based hetero-core structured optical fiber sensor. Sens. Actuators B106, 363–368 (2005)

    Article  Google Scholar 

  25. D. Monzón-Hernández, J. Villatoro, High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor. Sens. Actuators B115, 227–231 (2006)

    Article  Google Scholar 

  26. D. Wu, T. Zhu, K.S. Chiang, M. Deng, All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures. J. Lightwave Technol. 30, 805–810 (2012)

    Article  ADS  Google Scholar 

  27. Q. Yao, H. Meng, W. Wang, H. Xue, R. Xiong, B. Huang, C. Tan, X. Huang, Simultaneous measurement of refractive index and temperature based on a core-offset Mach-Zehnder interferometer combined with a fiber Bragg grating. Sens. Actuator A Phys. 209, 73–77 (2014)

    Article  Google Scholar 

  28. Z. Tian, S.S. Yam, H. Loock, Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photon. Technol. Lett. 20, 1387–1389 (2008)

    Article  ADS  Google Scholar 

  29. Y. Cao, H. Liu, Z. Tong, S. Yuan, J. Su, Simultaneous measurement of temperature and refractive index based on a Mach-Zehnder interferometer cascaded with a fiber Bragg grating. Opt. Commun. 342, 180–183 (2015)

    Article  ADS  Google Scholar 

  30. J. Villatoro, D. Monzón-Hernández, Low-cost optical fiber refractive-index sensor based on core diameter mismatch. J. Lightwave Technol. 24, 1409–1413 (2006)

    Article  ADS  Google Scholar 

  31. P. Roy Chaudhuri, W. X, C. Lu, Scalar model and exact vectorial description for the design analysis of hollow optical fiber components. Opt. Commun. 228, 285–293 (2003)

    Article  ADS  Google Scholar 

  32. S. Roy, P. Roy Chaudhuri, Mode analysis of realistic optical waveguide structures and microstructured holey fibers by modal field evolution. Opt. Commun. 284, 3280–3287 (2011)

    Article  ADS  Google Scholar 

  33. S. Lee, J. Park, H.J.Y. Jeong, K. Oh, Guided wave analysis of hollow optical fiber for mode-coupling device applications. J. Lightwave Technol. 27, 4919–4926 (2009)

    Article  ADS  Google Scholar 

  34. S.N. Khan, S.K. Chatterjee, P. Roy Chaudhuri, Polarization and propagation characteristics of switchable first-order azimuthally asymmetric beams generated in dual-mode fiber. Appl. Opt. 54, 1528–1542 (2015)

    Article  ADS  Google Scholar 

  35. G.P. Agrawal, Fiber-Optic Communication Systems, Microw. Opt. Eng. 4th edn. (Wiley, 1996)

  36. S.N. Khan, P. Roy Chaudhuri, Selective excitation of higher-order modes in etched gelatine-coated few-mode fiber and demonstration of high relative humidity measurement. J. Opt. Soc. Am. A 34, 122–132 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Roy Chaudhuri.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Roy Chaudhuri, P. Characteristics of cladding mode-based refractive index sensor using MMF-SMF-MMF configuration. J Opt 52, 296–306 (2023). https://doi.org/10.1007/s12596-022-00885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00885-1

Keywords

Navigation