Skip to main content
Log in

A double random phase encoding-based asymmetric cryptosystem using QZ modulation

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In the existing cryptosystems such as double random phase encoding (DRPE)-based, the input image is usually modulated with the random phase mask (RPM) by multiplication. Based on the existing DRPE cryptosystems, in this paper, we propose a novel asymmetric cryptosystem based on the QZ modulation. We introduce the QZ algorithm to modulate the plain image and the random phase mask for the first time. In our cryptosystem, we take the input image and RPM as two inputs of the QZ algorithm. The outputs of the QZ algorithm include four parts: two upper quasitriangular matrices and two unitary matrices. Then the upper quasitriangular matrice corresponding to the plain image is encoded in the optical transform domain to obtain the cipher image. Meanwhile, the two unitary matrices are regarded as private keys only for decryption. Therefore, our QZ-based cryptosystem is asymmetric. Furthermore, the two RPMs are not required in the whole decryption process. The numerical results have shown the feasibility, security, and superiority of our cryptosystem. The proposed QZ-based modulation method can be applied to any other optical cryptosystem, and the encryption for color normal or medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Liu, C. Guo, J.T. Sheridan, A review of optical image encryption techniques. Opt. Laser Technol. 57, 327–342 (2014)

    Article  ADS  Google Scholar 

  2. P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767 (1995)

    Article  ADS  Google Scholar 

  3. G. Situ, J. Zhang, Double random-phase encoding in the Fresnel domain. Opt. Lett. 29, 1584 (2004)

    Article  ADS  Google Scholar 

  4. G. Unnikrishnan, J. Joseph, K. Singh, Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett. 25, 887 (2000)

    Article  ADS  Google Scholar 

  5. I. Muniraj, C. Guo, B.-G. Lee, J.T. Sheridan, Interferometry based multispectral photon-limited 2D and 3D integral image encryption employing the Hartley transform. Opt. Express 23, 15907 (2015)

    Article  ADS  Google Scholar 

  6. S. Yuan, Y.H. Xin, M.T. Liu, S.X. Yao, X.J. Sun, An improved method to enhance the security of double random-phase encoding in the Fresnel domain. Opt. Laser Technol. 44, 51–56 (2012)

    Article  ADS  Google Scholar 

  7. C. Guo, I. Muniraj, J.T. Sheridan, Phase-retrieval-based attacks on linear-canonical-transform-based DRPE systems. Appl. Opt. 55, 4720 (2016)

    Article  ADS  Google Scholar 

  8. Z. Liu, Y. Zhang, S. Li, W. Liu, W. Liu, Y. Wang, S. Liu, Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains. Opt. Laser Technol. 47, 152–158 (2013)

    Article  ADS  Google Scholar 

  9. Y. Frauel, A. Castro, T.J. Naughton, B. Javidi, Resistance of the double random phase encryption against various attacks. Opt. Express 15, 10253 (2007)

    Article  ADS  Google Scholar 

  10. A. Carnicer, M. Montes-Usategui, S. Arcos, I. Juvells, Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt. Lett. 30, 1644 (2005)

    Article  ADS  Google Scholar 

  11. X. Peng, H. Wei, P. Zhang, Chosen-plaintext attack on lensless double-random. Opt. Lett. 31, 3261–3263 (2006)

    Article  ADS  Google Scholar 

  12. X. Peng, P. Zhang, H. Wei, B. Yu, Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31, 1044 (2006)

    Article  ADS  Google Scholar 

  13. H. Tashima, M. Takeda, H. Suzuki, T. Obi, M. Yamaguchi, N. Ohyama, Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack. Opt. Express 18, 13772 (2010)

    Article  ADS  Google Scholar 

  14. A.V. Zea, J.F. Barrera, R. Torroba, Cryptographic salting for security enhancement of double random phase encryption schemes. J. Opt. 19, 105703 (2017)

    Article  ADS  Google Scholar 

  15. K. Falaggis, A.H. Ramírez Andrade, J.G. Gaxiola Luna, C.G. Ojeda, R. Porras-Aguilar, Optical encryption with protection against Dirac delta and plain signal attacks. Opt. Lett. 41, 4787 (2016)

    Article  ADS  Google Scholar 

  16. W. Qin, X. Peng, Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118 (2010)

    Article  ADS  Google Scholar 

  17. Y. Shen, C. Tang, L. Zhou, Z. Lei, Optical single-channel cryptosystem based on the discrete wavelet transform and the chaotic standard map for multi-image. Appl. Opt. 59, 9558 (2020)

    Article  ADS  Google Scholar 

  18. Y. Shen, C. Tang, M. Xu, Z. Lei, Optical selective encryption based on the FRFCM algorithm and face biometric for the medical image. Opt. Laser Technol. 138, 106911 (2021)

    Article  Google Scholar 

  19. H. Singh, Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain. Opt. Lasers Eng. 81, 125–139 (2016)

    Article  Google Scholar 

  20. X. Wang, D. Zhao, A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Commun. 285, 1078–1081 (2012)

    Article  ADS  Google Scholar 

  21. X. Wang, Y. Chen, C. Dai, D. Zhao, Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. 53, 208 (2014)

    Article  ADS  Google Scholar 

  22. J. Cai, X. Shen, M. Lei, C. Lin, S. Dou, Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Lett. 40, 475 (2015)

    Article  ADS  Google Scholar 

  23. X.D. Chen, Y. Wang, J. Wang, Q.H. Wang, Asymmetric color cryptosystem based on compressed sensing and equal modulus decomposition in discrete fractional random transform domain. Opt. Lasers Eng. 121, 143–149 (2019)

    Article  Google Scholar 

  24. H. Chen, Z. Liu, L. Zhu, C. Tanougast, W. Blondel, Asymmetric color cryptosystem using chaotic Ushiki map and equal modulus decomposition in fractional Fourier transform domains. Opt. Lasers Eng. 112, 7–15 (2019)

    Article  Google Scholar 

  25. M. Shan, L. Liu, B. Liu, Z. Zhong, Asymmetric multiple-image encryption based on equal modulus decomposition and frequency modulation. Laser Phys. 30, 035202 (2020)

    Article  ADS  Google Scholar 

  26. Z. Shao, X. Liu, Q. Yao, Q. Na, Y. Shang, J. Zhang, Multiple-image encryption based on chaotic phase mask and equal modulus decomposition in quaternion gyrator domain. Signal Process. Image Commun. 80, 115662 (2020)

    Article  Google Scholar 

  27. Z. Zhu, X.D. Chen, C. Wu, J. Wang, W. Wang, An asymmetric color-image cryptosystem based on spiral phase transformation and equal modulus decomposition. Opt. Laser Technol. 126, 106106 (2020)

    Article  Google Scholar 

  28. X. Deng, Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment. Opt. Lett. 40, 3913 (2015)

    Article  ADS  Google Scholar 

  29. J. Wu, W. Liu, Z. Liu, S. Liu, Cryptanalysis of an “asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition.” Appl. Opt. 54, 8921 (2015)

    Article  ADS  Google Scholar 

  30. N.K. Nishchal, Optical Cryptosystems (IOP Publishing, England, 2019)

    Book  Google Scholar 

  31. Y. Wang, C. Quan, C.J. Tay, New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Appl. Opt. 55, 679 (2016)

    Article  ADS  Google Scholar 

  32. J. Cai, X. Shen, Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Laser Technol. 95, 105–112 (2017)

    Article  ADS  Google Scholar 

  33. A.K. Yadav, P. Singh, I. Saini, K. Singh, Asymmetric encryption algorithm for colour images based on fractional Hartley transform. J. Mod. Opt. 66, 629–642 (2019)

    Article  ADS  Google Scholar 

  34. C.F. Duan, J. Zhou, L.H. Gong, J.Y. Wu, N.R. Zhou, New color image encryption scheme based on multi-parameter fractional discrete Tchebyshev moments and nonlinear fractal permutation method. Opt. Lasers Eng 150, 106881 (2022)

    Article  Google Scholar 

  35. Z.J. Huang, S. Cheng, L.H. Gong, N.R. Zhou, Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Opt. Lasers Eng 124, 105821 (2020)

    Article  Google Scholar 

  36. H. Chen, X. Du, Z. Liu, C. Yang, Color image encryption based on the affine transform and gyrator transform. Opt. Lasers Eng. 51, 768–775 (2013)

    Article  Google Scholar 

  37. J. Wu, Z. Xie, Z. Liu, W. Liu, Y. Zhang, S. Liu, Multiple-image encryption based on computational ghost imaging. Opt. Commun. 359, 38–43 (2016)

    Article  ADS  Google Scholar 

  38. C.B. Moler, G.W. Stewart, An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. B. Adlerborn, B. Kagström, D. Kressner, A parallel QZ algorithm for distributed memory HPC systems. SIAM J. Sci. Comput. 36, C480–C503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Su, W. Xu, J. Zhao, L. Chen, X. Tian, Optical color image encryption based on chaotic fingerprint phase mask in various domains and comparative analysis. Appl. Opt. 59, 474 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (Grant no. 11972106, 11772081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Tang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Tang, C. & Lei, Z. A double random phase encoding-based asymmetric cryptosystem using QZ modulation. J Opt 52, 189–196 (2023). https://doi.org/10.1007/s12596-022-00883-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00883-3

Keywords

Navigation