Skip to main content
Log in

One-way two-dimensional photonic crystal absorber combined with graphene

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, a one-way absorber based on a two-dimensional photonic crystal (2D-PCs) is demonstrated. The structure of the 2D-PCs is nanopillar arrays with defect pillar. The non-reciprocal radiation characteristics of the one-way absorber in the visible light band are studied, and the results show that three absorption peaks with in the wavelength range of 430–445 nm with the absorption of 80, 90.3 and 89% have been achieved, respectively. In addition, the original one-way absorber was optimized by combined graphene. The influence of structural parameters, incident angle, chemical potential and other factors on the radiation characteristics are studied, and the theoretical analysis shows that graphene can adjust the absorption peaks. Through analysis of the electric field profile, physical origin of one-way absorption related to localized surface plasmon resonance of nanopillar. Compared to the existing unidirectional devices, the structure has the advantages of small size, high efficiency, wide bandwidth, and easy photoelectric integration. It provides a new method for the design of the perfect one-way absorber with controllable infrared band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-statephysics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlatices. Phys. Rev. Lett. 58(23), 2486–2489 (1987)

    Article  ADS  Google Scholar 

  3. S.Y. Shen, Y. Yuan, Z.H. Ruan, H.P. Tan, Optimizing the design of an embedded grating polarizer for infrared polarization light field imaging. Res. Phys. 12, 21–31 (2019)

    Google Scholar 

  4. S.Y. Shen, Z.H. Ruan, S.N. Li, Y. Yan, H.P. Tan, Analysis of polarization-dependent continuous two-phase control mechanism for trapezoidal nano-antennas through multipole expansion method. J. Phys. D Appl. Phys. 53, 095104 (2019)

    Article  ADS  Google Scholar 

  5. H. Wang, D. Qi, Omnidirectional infrared nonreciprocal absorbers based on CdTe gratings. Int. J. Heat Mass Transf. 135, 142–148 (2019)

    Article  Google Scholar 

  6. H. Wang, H. Wu, J. Zhou, Nonreciprocal optical properties based on magneto-optical materials: n-InAs, GaAs and HgCdTe. J. Quant. Spectrosc. Radiat. Transf. 206, 254–259 (2018)

    Article  ADS  Google Scholar 

  7. H. Wang, H. Wu, Z. Shen, Nonreciprocal optical properties of thermal radiation with SiC grating magneto-optical materials. Opt. Express 25, 19610 (2017)

    ADS  Google Scholar 

  8. Y. Chen, H.Q. Fan, B. Lu, Tamm state of semi-infinite photonic crystal based on surface defect cavity with porous silicon and its refractive index sensing mechanism. Acta Physica Sin. 63(24), 244207 (2014). ((in Chinese))

    Article  ADS  Google Scholar 

  9. Z.Q. Zhang, H. Lu, S.H. Wang et al., Optical Tamm state and related lasting effect enhanced by planar plasmonic metamaterials. Acta Physica Sin. 64(11), 114202 (2015). ((in Chinese))

    Article  Google Scholar 

  10. X.F. Chen, S.J. Li, Y. Zhang et al., The wide-angle perfect absorption based on the optical Tamm states. Optoelectron. Lett. 10(4), 317–320 (2014)

    Article  ADS  Google Scholar 

  11. Y. Chen, J. Dong, T. Liu et al., Study on the sensing mechanism of photonic crystal containing metal layer based on the coupling analysis of optical Tamm state. Chin. J. Lasers 42(11), 111400 (2015). ((in Chinese))

    Google Scholar 

  12. X. Shi, J. Mo, Y. Fang et al., Tunable multichannel absorber composed of grapheme and doped periodic structures. Opt. Commun. 383, 391–396 (2017)

    Article  ADS  Google Scholar 

  13. Y. Fang, Y. Zhang, Perfect nonreciprocal absorption based on metamaterial slab. Opt. Commun. 416, 25–31 (2018)

    Article  ADS  Google Scholar 

  14. R. Ma, Y. Tang, J. Wang et al., Electromagnetic wave one-way absorber based on magnetic surface plasmon resonance coupling. Chin. Laser 43(1), 0117001 (2016)

    Article  Google Scholar 

  15. C. He, X.C. Sun, Z. Zhang et al., Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film. Opt. Express 21(23), 28933–28940 (2013)

    Article  ADS  Google Scholar 

  16. H.Y. Dong, J. Wang, T.J. Cui, One-way Tamm plasmon-polaritons on the interface of magnetophotonic crystals and conducting metal oxides. Phys. Rev. B 87(4), 045406 (2013)

    Article  ADS  Google Scholar 

  17. Y.T. Fang, Tunable nonreciprocal tunneling based on nonsymmetric magnetoplasmonic resonance structure. Plasmonics 9(5), 1133–1141 (2014)

    Article  Google Scholar 

  18. Y.T. Fang, L.K. Chen, J. Zhen et al., Nonreciprocal channels of light through the coupling of two nonsymmetric Tamm magnetoplasmon polaritons. IEEE Photonics J. 6(4), 4801611 (2014)

    Google Scholar 

  19. R.K. Ma, Y.M. Tang, J.J. Wang, Z.W. Zheng, Y.T. Fang, Electromagnetic wave unidi-rectional absorber based on magnetic surface plasmon resonance coupling. Chin. J. Lasers 43(1), 0117001 (2016)

    Article  Google Scholar 

  20. Y. Zh Li, L.M. Qi, J. Sh Yu et al., One-dimensional multiband terahertz graphene photo-nic crystal filters. Opt. Mater. Express 7(4), 1228–1239 (2017)

    Article  ADS  Google Scholar 

  21. L.M. Qi, Ch. Liu, Complex band structures of 1-D anisotropic graphene photonic crystal. Photonics Res. 5(6), 543–551 (2017)

    Article  Google Scholar 

  22. H. Wang, Y. Yang, L.P. Wang, Infrared frequency-tunable coherent thermal sources. J. Opt. 17, 045104 (2015)

    Article  ADS  Google Scholar 

  23. L. Dal Negro, Optics of Aperiodic Structures (Pan Stanford Publishing Pte. Ltd, Singapore, 2014)

    Google Scholar 

  24. K. Ziegler, Minimal conductivity of graphene: nonuniversal values from the Kubo formula. Phys. Rev. B 75, 233407 (2007)

    Article  ADS  Google Scholar 

  25. L.A. Falkovsky, A.A. Varlamov, Space-time dispersion of graphene conductivity. Eur. Phys. J. B 56, 281–284 (2007)

    Article  ADS  Google Scholar 

  26. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, Anomalous absorption line in the magneto-optical response of graphene. Phys. Rev. Lett. 19, 026222 (2007)

    Google Scholar 

  27. M.A. Vincenti, D. Cegli, M. Grande, A. Orazio, M. Scalora, Nonlinear control of absorption in one-dimensional photoniccrystal with graphene-based defect. Opt. Lett. 38(18), 3550–3553 (2013)

    Article  ADS  Google Scholar 

  28. S H Dang, (2007) Structural design of one- or two-dimensionalphotonic crystal for iii-v semiconductor and organic photoelectric materials. Taiyuan:TYUT, 9–11

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51606093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Qing, X. & Fangzhou, O. One-way two-dimensional photonic crystal absorber combined with graphene. J Opt 52, 339–346 (2023). https://doi.org/10.1007/s12596-022-00879-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00879-z

Keywords

Navigation