Skip to main content
Log in

Modeling of a novel K5 prism-based surface Plasmon resonance sensor for urea detection employing Aluminum arsenide

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This paper presents the modeling of a novel Kron-5 (K5) prism-based Surface Plasmon Resonance (SPR) sensor to detect urea employing Aluminum arsenide (AlAs). The proposed SPR structure is designed based on a silver (Ag)-coated Kretschmann configuration. This structure contains AlAs to avoid Ag oxidation, as well as barium titanate for increased absorption, and black phosphorus for biorecognition element, respectively. For the detection process, the urea concentration of 0.625 gm/dl, 2.5 gm/dl and 5 gm/dl are used with the refractive indices (RIs) of 1.337. 1.339 and 1.342, respectively. The presented work is shown in three significant ways at 633 nm wavelength by exploiting the transfer matrix method. Firstly, the optimal performance of the proposed K5 prism-based structure is compared with BK7 and SK11-based structures, which have lower and higher refractive indexes compared to the proposed prism. Secondly, the optimal performance of the proposed structure is validated with respect to the RI of urea. Thirdly, an impact of AlAs in the proposed structure has been shown. The maximum achieved SPR parameters are sensitivity of 452.85°/RIU, quality factor of 93.37 \({\mathrm{RIU}}^{-1}\), detection accuracy of 0.65 and dip-of-figure-of-merit of 129,388.57 for the proposed sensor. Finally, the comparative study of SPR sensor performance for urea detection is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Eghbali, A. Farahbakhsh, A. Rohani, A.N. Pour, Urea biosensor based on immobilization of urease on ZnO nanoparticles. Orient. J. Chem. 31, 1237–1242 (2015). https://doi.org/10.13005/ojc/310284

    Article  Google Scholar 

  2. J.F. Masson, Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2, 16–30 (2017). https://doi.org/10.1021/acssensors.6b00763

    Article  Google Scholar 

  3. N.A. Jamil, P.S. Menon, F.A. Said, K.A. Tarumaraja, G.S. Mei, B.Y. Majlis, Graphene-based surface plasmon resonance urea biosensor using Kretschmann configuration. IEEE (RSM) (2017). https://doi.org/10.1109/RSM.2017.8069122

    Article  Google Scholar 

  4. S. Pal, A. Verma, J.P. Saini, Y.K. Prajapati, Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor. Inst. Eng. Techn. Optoelec. 13, 196–201 (2019). https://doi.org/10.1049/iet-opt.2018.5023

    Article  Google Scholar 

  5. B.D. Gupta, R.K. Verma, Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J. Sens. (2009). https://doi.org/10.1155/2009/979761

    Article  Google Scholar 

  6. N.A. Jamil, N.B. Khairulazdan, P.S. Menon, A.R. Zain, A.A. Hamzah, B.Y. Majlis, Graphene-MoS2 SPR-based biosensor for urea detection. IEEE (ISESD) (2018). https://doi.org/10.1109/ISESD.2018.8605491

    Article  Google Scholar 

  7. N. A. Jamil, P. S. Menon, G. S. Mei, S. Shaari, B. Y. Majlis, “Urea biosensor utilizing graphene- MoS2 and Kretschmann-based SPR”, IEEE InTENCON, 1973–1977 (2017). https://doi.org/10.1109/TENCON.2017.8228183

  8. J. Homola, Surface plasmon resonance based sensors. Chem. Sens. Biosen. 4, 45–67 (2006). https://doi.org/10.1007/5346-014

    Article  Google Scholar 

  9. H. Fu, S. Zhang, H. Chen, J. Weng, Graphene enhances the sensitivity of fiber optic surface plasmon resonance biosensor. IEEE Sens. 15, 5478–5482 (2015). https://doi.org/10.1109/JSEN.2015.2442276

    Article  Google Scholar 

  10. K.L. Lee, C.W. Lee, W.S. Wang, P.K. Wei, Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J. Biomed. Opt. 12, 044023 (2007). https://doi.org/10.1117/1.2772296

    Article  ADS  Google Scholar 

  11. L. E. Ronald, “Multiwavelength Surface Plasmon Resonance Sensor Designs for Chemical and Biochemical Detection”, PHD thesis, Dept. of Chemistry, Virginia Polytechnic Institute and State University, Ontario, Canada, (2013).

  12. S.H. Choi, Y.L. Kim, K.M. Byun, Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Exp. 19, 458–466 (2011). https://doi.org/10.1364/OE.19.000458

    Article  Google Scholar 

  13. R. Kumar, S. Pal, Y. K. Prajapati, S. Kumar, J. P. Saini, “Sensitivity Improvement of a MXeneimmobilized SPR Sensor with Ga-doped-ZnO for Biomolecules Detection”, IEEE Sensors, (2022).

  14. A. Verma, A.K. Sharma, Y.K. Prajapati, On the sensing performance enhancement in SPR-based Biosensor using specific two-dimensional materials (Borophene and Antimonene). Opt. Mater. 119, 111355 (2021). https://doi.org/10.1016/j.optmat.2021.111355

    Article  Google Scholar 

  15. V.K. Verma, S. Pal, C. Rizal, Y.K. Prajapati, Tunable and sensitive detection of cortisol using anisotropic phosphorene with a surface plasmon resonance technique: numerical investigation. Magnetochem. 8(3), 31 (2022). https://doi.org/10.3390/magnetochemistry8030031

    Article  Google Scholar 

  16. A. Verma, A. Prakash, R. Tripathi, Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Comm. 357, 106–112 (2015). https://doi.org/10.1016/j.optcom.2015.08.076

    Article  ADS  Google Scholar 

  17. A.K. Sharma, A.K. Pandey, Blue phosphorene/ heterostructure based SPR sensor with enhanced sensitivity. IEEE Phot. Techn. Lett. 30, 595–598 (2018). https://doi.org/10.1109/LPT.2018.2803747

    Article  ADS  Google Scholar 

  18. R. Kumar, A.S. Kushwaha, M. Srivastava, H. Mishra, S.K. Srivastava, Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor. Appl. Phys. A Mater. Sci. Proc. 124, 235 (2018). https://doi.org/10.1007/s00339-018-1606-5

    Article  ADS  Google Scholar 

  19. S. Fouad, N. Sabr, Z.A.Z. Jamal, P. Poopalan, Surface plasmon resonance sensor sensitivity enhancement using gold-dielectric material. Int. J. Nanoelectron. Mater. 10, 149–158 (2017)

    Google Scholar 

  20. L. Liu, M. Wang, L. Jiao, T. Wu, F. Xia, M. Liu, W. Kong, L. Dong, M. Yun, Sensitivity enhancement of a graphene–barium titanatebased surface plasmon resonance biosensor with an Ag–Au bimetallic structure in the visible region. J. Opt. Soc. Am. B 36, 1108–1116 (2019). https://doi.org/10.1364/JOSAB.36.001108

    Article  ADS  Google Scholar 

  21. P. Sun, M. Wang, L. Liu, L. Jiao, W. Du, F. Xia, M. Liu, W. Kong, L. Dong, M. Yun, Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl. Surf. Sci. 475, 342–347 (2019). https://doi.org/10.1016/j.apsusc.2018.12.283

    Article  ADS  Google Scholar 

  22. M.S. Rahman, M.R. Hasan, K.A. Rikta, M.S. Anower, A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt. Mater. 75, 567–573 (2018). https://doi.org/10.1016/j.optmat.2017.11.013

    Article  ADS  Google Scholar 

  23. S.Y. Cho, Y. Lee, H.J. Koh, H. Jung, J.S. Kim, H.W. Yoo, J. Kim, H.J. Jung, Superior chemical sensing performance of black phosphorus: comparison with and graphene. Adv. Mater. 28, 7020–7028 (2016). https://doi.org/10.1002/adma.201601167

    Article  Google Scholar 

  24. N. Mao, J. Tang, L. Xie, J. Wu, B. Han, J. Lin, S. Deng, W. Ji, H. Xu, K. Liu, L. Tong, Optical anisotropy of black phosphorus in the visible regime. Am. Chem. Soc. 138, 300–305 (2016). https://doi.org/10.1021/jacs.5b10685

    Article  Google Scholar 

  25. L. Wu, J. Guo, Q. Wang, S. Lu, X. Dai, Y. Xiang, D. Fan, Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sen. Actua. B Chem. 249, 542–548 (2017). https://doi.org/10.1016/j.snb.2017.04.110

    Article  Google Scholar 

  26. Y. Vasimalla, H.S. Pradhan, R.J. Pandya, SPR performance enhancement for DNA hybridization employing black phosphorus, silver, and silicon. Appl. Opt. 59, 7299–7307 (2020). https://doi.org/10.1364/AO.397452

    Article  ADS  Google Scholar 

  27. H. Bach, N. Neuroth, The properties of optical glass (Springer, Berlin, 1998). https://doi.org/10.1007/978-3-642-57769-7

    Book  Google Scholar 

  28. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  29. P.K. Maharana, T. Srivastava, R. Jha, On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9, 1113–1120 (2014). https://doi.org/10.1007/s11468-014-9721-4

    Article  Google Scholar 

  30. J.B. Maurya, Y.K. Prajapati, V. Singh, J.P. Saini, R. Tripathi, Performance of graphene- based surface plasmon resonance sensor using silicon layer. Opt. Quant. Elect. 47, 3599–3611 (2015). https://doi.org/10.1007/s11082-015-0233-z

    Article  Google Scholar 

  31. N. Mudgal, A. Saharia, A. Agarwal, G. Singh, ZnO and Bi-metallic (Ag–Au) layers based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1844074

    Article  Google Scholar 

  32. A. Pal, A. Jha, A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets. Optik 231, 166378 (2021). https://doi.org/10.1016/j.ijleo.2021.166378

    Article  ADS  Google Scholar 

  33. B. Karki, A. Pal, Y. Singh, S. Sharma, Sensitivity enhancement of surface plasmon resonance sensor using 2D material barium titanate and black phosphorus over the bimetallic layer of Au, Ag, and Cu. Opt. Comm. 508, 127616 (2022). https://doi.org/10.1016/j.optcom.2021.127616

    Article  Google Scholar 

  34. A. Srivastava, R. Das, Y.K. Prajapati, Effect of perovskite material on performance of surface plasmon resonance biosensor. IET Optoelectr. 14(5), 256–265 (2020). https://doi.org/10.1049/iet-opt.2019.0122

    Article  Google Scholar 

  35. S.H. Wemple, J.M. Didomenico, I. Camlibel, Dielectric and optical properties of melt-grown. J. Phys. Chem. Solids 29, 1797–1803 (1968). https://doi.org/10.1016/0022-3697(68)90164-9

    Article  ADS  Google Scholar 

  36. N. Mudgal, P. Yupapin, J. Ali, G. Singh, Graphene-Affinity Layer-Based Surface Plasmon Resonance (SPR) Biosensor for Pseudomonas Bacterial Detection. Plasmonics 2, 1–9 (2020). https://doi.org/10.1007/s11468-020-01146-.2

    Article  Google Scholar 

  37. S. I. Ahmad, “Studies on some biophysical aspects of human renal excretory fluid”, Ph.D dissertation, Dept. Phys, JNTU, Hyderabad, India, 2010.

  38. K.N. Shushama, M.M. Rana, R. Inum, M.B. Hossain, Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt. Quantun. Electron. 49, 381 (2017). https://doi.org/10.1007/s11082-017-1216-z

    Article  Google Scholar 

  39. M.S. Rahman, M.S. Anower, M.R. Hasan, M.B. Hossain, M.I. Haque, Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Comm. 396, 36–43 (2017). https://doi.org/10.1016/j.optcom.2017.03.035

    Article  ADS  Google Scholar 

  40. S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Figure of Merit Enhancement of Surface Plasmon Resonance Biosensor Using Ga-Doped Zinc Oxide in Near Infrared Range. Phot. Sens. (2020). https://doi.org/10.1007/s13320-020-0583-4

    Article  Google Scholar 

  41. R. Çelen, Y. Ulcay, Baryum Titanatin Tekstilde Elektromanyetik Kalkanlama Uygulamalarinda KullanIMI. J. Ulu. Uni. Fac. Eng. 23, 29–44 (2018). https://doi.org/10.17482/uumfd.398903

    Article  Google Scholar 

  42. F. A. Said, P. S. Menon, M. N. Nawi, A. R. Zain, A. Jalar, B. Y. Majlis, “Copper-graphene SPR-based biosensor for urea detection”, (ICSE) IEEE, 264–267 (2016). https://doi.org/10.1109/SMELEC.2016.7573642.

  43. S. Pal, A. Verma, Y.K. Prajapati, J.P. Saini, Influence of black phosphorous on performance of surface plasmon resonance biosensor. Opt. Quantun. Electron. 49, 403 (2017). https://doi.org/10.1007/s11082-017-1237-7

    Article  Google Scholar 

  44. F.A. Said, P.S. Menon, T. Kalaivani, M.A. Mohamed, A. Abedini, S. Shaari, B.Y. Majlis, V. Retnasamy, FDTD analysis of structured metallic nanohole films for LSPR-based biosensor. IEEE (RSM) (2015). https://doi.org/10.1109/RSM.2015.7355024

    Article  Google Scholar 

  45. H. Raether, “Surface plasmons on smooth surfaces, in Surface plasmons on smooth and rough surfaces and on gratings”, Springer, Berlin, pp 4–39 (1988)

  46. W.M. Mukhtar, S. Shaari, A.A. Ehsan, P.S. Menon, Electrooptics interaction imaging in active plasmonic devices. Opt. Mater. Exp. 4, 424 (2014). https://doi.org/10.1016/j.snb.2012.07.015

    Article  ADS  Google Scholar 

  47. L. Wu, Y. Jia, L. Jiang, J. Guo, X. Dai, Y. Xiang, D. Fan D, Sensitivity improved SPR biosensor based on the MoS2/graphene–aluminum hybrid structure. J. Ligh. Techn. 35, 82–87 (2016). https://doi.org/10.1109/JLT.2016.2624982

    Article  Google Scholar 

  48. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J. Eur. Cer. Soc. 22, 2115–2121 (2002). https://doi.org/10.1016/S0955-2219(02)00027-4

    Article  Google Scholar 

  49. I. Pockrand, Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72, 577–588 (1978). https://doi.org/10.1016/0039-6028(78)90371-0

    Article  ADS  Google Scholar 

  50. A. Shalabney, I. Abdulhalim, Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Act. A 159, 24–32 (2010). https://doi.org/10.3390/s20092445

    Article  Google Scholar 

  51. Y. Vasimalla, H. S. Pradhan, “Performance Enhancement of SPR sensor in NIR-Region for urea detection using MoS2-Dielectric materials- MoS2 based structure, in IEEE-ASIANCON, 1-4 (2021). https://doi.org/10.1109/ASIANCON51346.2021.9544743

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesudasu Vasimalla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasimalla, Y., Pradhan, H.S. Modeling of a novel K5 prism-based surface Plasmon resonance sensor for urea detection employing Aluminum arsenide. J Opt 52, 242–253 (2023). https://doi.org/10.1007/s12596-022-00878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00878-0

Keywords

Navigation