Skip to main content
Log in

A new technique to optimize the properties of photonic crystal fibers supporting transmission of multiple orbital angular momentum modes

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Spurred by the continuous development of orbital angular momentum (OAM) optical fiber communication technology, many photonic crystal fibers (PCFs) with excellent properties have been proposed. However, design and optimization of the performance of PCFs are usually complex. In this paper, a new optimization method is described and demonstrated on a LaSF09 high refractive index ring with a certain thickness inlaid in the central pore. The effective index difference, dispersion, effective mode area, nonlinear coefficient, numerical aperture (NA), OAM purity, walk-off length, and confinement loss at 1.55 μm are analyzed. A conventional photonic crystal fiber (PCF) that can transmit OAM modes is used to verify the method and our results reveal the validity and large potential of the method pertaining to the design and optimization of PCFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.J. Richardson, J.M. Fini, Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013)

    ADS  Google Scholar 

  2. R. Ryf, S. Randel, A.H. Gnauck et al., Space-division multiplexing over 10 km of three-mode fiber using coherent 6x6 MIMO processing. J. Lightwave Technol. 30, 521–531 (2011)

    ADS  Google Scholar 

  3. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw et al., Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45(11), 8185 (1992)

    ADS  Google Scholar 

  4. V.V. Kotlyar, A.A. Almazov, S.N. Khonina et al., Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. JOSA A 22(5), 849–861 (2005)

    ADS  MathSciNet  Google Scholar 

  5. F. Parmigiani, Y. Jung, L. Grünernielsen, et al, MIMO-less space division multiplexing transmission over 1 km elliptical core few mode fiber. Cleo, (2017)

  6. N. Bozinovic, Y. Yue, Y. Ren et al., Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    ADS  Google Scholar 

  7. A. Vigneswaran, Mahendran, Study on 20 and 50 Gbps soliton transmission in conventional single mode fiber (SMF). IEEE, (2014)

  8. F. Yaman, N. Bai, B. Zhu et al., Long distance transmission in few-mode fibers. Opt. Express 18, 132–507 (2010)

    Google Scholar 

  9. E. Liu, S. Liang, J. Liu, Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber. Superlattices Microstruct. 130, 61–67 (2019)

    ADS  Google Scholar 

  10. W. Liu, Y. Shi, Z. Yi, C. Liu, F. Wang, X. Li, J. Lv, L. Yang, P.K. Chu, Surface plasmon resonance chemical sensor composed of a microstructured optical fiber for the detection of an ultra-wide refractive index range and gas-liquid pollutants. Opt. Express 29, 40734–40747 (2021)

    ADS  Google Scholar 

  11. C. Li, B. Yan, J. Liu, Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance. J. Opt. Soc. Am. A 36, 1663–1668 (2019)

    ADS  Google Scholar 

  12. E. Liu, W. Tan, B. Yan, J. Xie, R. Ge, J. Liu, Broadband ultra-flattened dispersion, ultra-low confinement loss and large effective mode area in an octagonal photonic quasi-crystal fiber. J. Opt. Soc. Am. A 35, 431–436 (2018)

    ADS  Google Scholar 

  13. B. Yan, A. Wang, E. Liu, W. Tan, J. Xie, R. Ge, J. Liu, Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber. J. Phys. D Appl. Phys. 51, 155105 (2018)

    ADS  Google Scholar 

  14. Y. Yue, Z. Lin, Y. Yan et al., Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber. Opt. Lett. 37, 1889–1891 (2012)

    ADS  Google Scholar 

  15. L. Xi, W. Tian, X. Zhang, A circular photonic crystal fiber supporting 26 OAM modes. Opt. Fiber Technol. 30, 184–189 (2016)

    ADS  Google Scholar 

  16. X. Bai, H. Chen, Y. Zhuang et al., A new type Bragg fiber for supporting 50 orbital angular momentum modes. Optik 219, 165153 (2020)

    ADS  Google Scholar 

  17. L. Yu, X. Xun, W. Ning et al., Numerical analysis of a photonic crystal fiber for supporting 76 orbital angular momentum modes. J. Opt. 20(10), 105701 (2018)

    ADS  Google Scholar 

  18. L. Zhang, K. Zhang, J. Peng et al., Circular photonic crystal fiber supporting 110 OAM modes. Opt. Commun. 429, 189–193 (2018)

    ADS  Google Scholar 

  19. Y. Yue, L. Zhang, Y. Yan et al., Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber. Opt. Lett. 37(11), 1889–1891 (2012)

    ADS  Google Scholar 

  20. H. Fu, Z. Yi, Y. Shi et al., Circular anti-resonance fibre supporting orbital angular momentum modes with flat dispersion, high purity and low confinement loss. J. Mod. Opt. 68(15), 784–791 (2021)

    ADS  Google Scholar 

  21. E. Liu, W. Tan, B. Yan et al., Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber. J. Phys. D Appl. Phys. 52, 325110 (2019)

    ADS  Google Scholar 

  22. H. Zhang, X. Zhang, H. Li et al., A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission. Opt. Commun. 397, 59–66 (2017)

    ADS  Google Scholar 

  23. Q. Ma, A.P. Luo, W. Hong, Numerical study of photonic crystal fiber supporting 180 orbital angular momentum modes with high mode quality and flat dispersion. J. Lightwave Technol. 39, 2971–2978 (2021)

    ADS  Google Scholar 

  24. J.N. Reddy, An introduction to the finite element method (John Wiley & Sons, Ltd, 2013)

    Google Scholar 

  25. Y. Deng, G. Cao, Y. Wu et al., Theoretical description of dynamic transmission characteristics in MDM waveguide aperture-side-coupled with ring cavity. Plasmonics 10, 1537–1543 (2015)

    Google Scholar 

  26. G. Cao, H. Li, D. Yan et al., Systematic theoretical analysis of selective-mode plasmonic filter based on aperture-side-coupled slot cavity. Plasmonics 9, 1163–1169 (2014)

    Google Scholar 

  27. F. Zhou, F. Qin, Z. Yi et al., Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 23, 17041–17048 (2021)

    Google Scholar 

  28. A.M. Blackburn, J.C. Loudon, Vortex beam production and contrast enhancement from a magnetic spiral phase plate. Ultramicroscopy 136, 127–143 (2014)

    Google Scholar 

  29. L. Allen, M.W. Beijersbergen, R. Spreeuw et al., Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    ADS  Google Scholar 

  30. C. Brunet, P. Vaity, Y. Messaddeq et al., Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express 22, 26117–16127 (2014)

    ADS  Google Scholar 

  31. T. He, B. Wu, Low confinement loss photonic crystal fibre capable of supporting 54 orbital angular momentum modes. J. Mod. Opt. 67, 1–7 (2020)

    Google Scholar 

  32. F. Wang, C. Liu, Z. Sun et al., A highly sensitive SPR sensors based on two parallel PCFs for low refractive index detection. IEEE Photonics J. 10(4), 1–10 (2018)

    Google Scholar 

  33. X. Feng, A.K. Mairaj, D.W. Hewak et al., Nonsilica glasses for holey fibers. J. Lightwave Technol. 23(6), 2046 (2005)

    ADS  Google Scholar 

  34. J. Hsu, Liao, Diode-laser-pumped glass-clad Ti: sapphire crystal-fiber-based broadband light source. IEEE Photonics Technol. Lett. 24, 854–856 (2012)

    ADS  Google Scholar 

  35. C. Liu, J. Lü, W. Liu, F. Wang, P.K. Chu, Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect [Invited]. Chin. Opt. Lett. 19(10), 102202 (2021)

    ADS  Google Scholar 

  36. M. Ahabboud, T. Lamcharfi, F. Abdi et al., Effect of Cu doping on structural and dielectric properties of Pb1-xCux(Zr0.52Ti0.48)O3(PCxZT) (0 ≤ x ≤ 0.2) ceramics prepared by sol-gel method. Asian J. Chem. 33, 665–670 (2021)

    Google Scholar 

  37. V.V.R.K. Kumar, A.K. George, W.H. Reeves et al., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10(25), 1520–1525 (2002)

    ADS  Google Scholar 

  38. V. Matejec, M. Hayer, J. Mrazek et al., Performance of the sol-gel method for the preparation of optical fibers. Rev. Roum. Chim. 52, 991 (2007)

    Google Scholar 

  39. W. Xianglong, Y. Zheng, Y. Luo, J. Zhang, Z. Yi, Wu. Xianwen, S. Cheng, W. Yang, Y. Yang, W. Pinghui, Phys. Chem. Chem. Phys 23(47), 26864–26873 (2021)

    Google Scholar 

  40. Y. Deng, G. Cao et al., Dynamic control of double plasmon-induced transparencies in aperture-coupled waveguide-cavity system. Plasmonics 13, 345–352 (2018)

    Google Scholar 

  41. M.A. Kabir, M.M. Hassan, K. Ahmed et al., Novel spider web photonic crystal fiber for robust mode transmission applications with supporting orbital angular momentum transmission property. Opt. Quantum Electron. (2020). https://doi.org/10.1007/s11082-020-02447-w

    Article  Google Scholar 

  42. X. Bai, Chen et al., Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission. Optik 158, 1266–1274 (2018)

    ADS  Google Scholar 

  43. S.H. Huang et al., Microstructure ring fiber for supporting higher-order orbital angular momentum modes with flattened dispersion in broad waveband. Appl. Phys. B 125(11), 1–8 (2019)

    ADS  Google Scholar 

  44. Z. Hu, W. Zhang, L. Xi et al., A new type circular photonic crystal fiber for orbital angular momentum mode transmission. IEEE Photonics Technol. Lett. 28, 1426–1429 (2016)

    ADS  Google Scholar 

  45. X. Wan, Z. Wang, B. Sun et al., Low dispersion and confinement loss photonic crystal fiber for orbital angular momentum mode transmission. Opt. Quantum Electron. 52, 6 (2020)

    Google Scholar 

  46. S.M. Islam, J. Sultana et al., A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18, 575–582 (2018)

    ADS  Google Scholar 

  47. Y. Yue, Y. Yan, N. Ahmed et al., Mode and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber. Optical Society of America (2012)

  48. S. An, J. Lv, Z. Yi et al., Ultra-short and dual-core photonic crystal fiber polarization splitter composed of metal and gallium arsenide. Optik 226, 165779 (2021)

    ADS  Google Scholar 

Download references

Funding

The work was jointly supported by Postdoctoral Scientific Research Development Fund of Heilongjiang Province [LBH-Q20081], Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities [140119001], and City University of Hong Kong Strategic Research Grant (SRG) [Grant Number 7005505] and Science and Technology Planning Project of Guangdong Province [2018A01006].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Liu, C., Yi, Z. et al. A new technique to optimize the properties of photonic crystal fibers supporting transmission of multiple orbital angular momentum modes. J Opt 52, 307–316 (2023). https://doi.org/10.1007/s12596-022-00876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00876-2

Keywords

Navigation