Skip to main content
Log in

Reusable microfluidic chip processed by femtosecond double-pulse-assisted polarization-selective etching in fused silica glass

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Microfluidic chip, with the advantage of compact structure and low reagent consumption, has rapidly emerged as the key technologies in bio(chemical) analysis and materials generation. In this work, a facile method is presented to fabricate reusable microfluidic in fused silica glass using femtosecond double-pulse laser-assisted polarization-selective wet etching. Three methods of dark treatment, chemical treatment and static treatment are used to effectively control the wettability of the surface of microchannel to increase the reuse rate of the microfluidic chip. Furthermore, simulations and experiments for three different kinds of Y-shaped micromixers are carried out to achieve better mixing function of microfluidic. Results indicate that arc-shaped channels have better mixing function than square-wave-shaped channel and linear-shaped channels. Finally, the application of oil-in-water and water-in-oil droplet preparation is carried out using the prepared microfluidic. It is find that the volume of each drop is about 1.5 × 10−3–2.5 × 10−2 μL. We believe the work in this paper will provide important theories and technologies for the rapid development of microfluidic chips and femtosecond laser processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Castillo-Leon, W.E. Svendsen et al., Lab-on-a-chip devices and micro-total analysis systems (Springer, Dordrecht, 2015), pp. 1–241

    Google Scholar 

  2. D. Chu, P. Yao et al., Ablation enhancement of fused silica glass by femtosecond laser double-pulse Bessel beam. J. Opt. Soc. Am. B 11(37), 3535–3541 (2020)

    Article  ADS  Google Scholar 

  3. Y. Ju, Y. Liao et al., Fabrication of large-volume microfluidic chamber embedded in glass using three-dimensional femtosecond laser micromachining. Microfluid. Nanofluid. 11(1), 111–117 (2011)

    Article  Google Scholar 

  4. C. Shan, F. Chen et al., Multi-microchannel helical mixer fabricated by femtosecond laser inside fused silica. Micromach. Basel 9(1), 29 (2018)

    Article  Google Scholar 

  5. Y. Liao, J. Song et al., Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 12(4), 746–749 (2012)

    Article  Google Scholar 

  6. L. Shang, Y. Cheng et al., Emerging droplet microfluidics. Chem. Rev. 117(12), 7964–8040 (2017)

    Article  Google Scholar 

  7. R. Zilionis, J. Nainys et al., Single-cell barcoding and sequencing using droplet microfluidics. Nat. Protoc. 12(1), 44–73 (2017)

    Article  Google Scholar 

  8. S. Mashaghi, A. Abbaspourrad et al., Droplet microfluidics: a tool for biology, chemistry and nanotechnology. TrAC-Trends Anal. Chem. 82, 118–125 (2016)

    Article  Google Scholar 

  9. D.M. Headen, J.R. García et al., Parallel droplet microfluidics for high throughput cell encapsulation and synthetic microgel generation. Microsyst. Nanoeng. 4(1), 17076 (2018)

    Article  Google Scholar 

  10. P. Liu, L. Jiang et al., Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass. Opt. Lett. 38(22), 4613–4616 (2013)

    Article  ADS  Google Scholar 

  11. S. Darvishi, T. Cubaud et al., Ultrafast laser machining of tapered microchannels in glass and PDMS. Opt. Laser Eng. 50(2), 210–214 (2012)

    Article  Google Scholar 

  12. C.W. Tsao, L. Hromada et al., Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4), 499–505 (2007)

    Article  Google Scholar 

  13. X. Yan, L. Jiang et al., Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication. Opt. Lett. 39(17), 5240 (2014)

    Article  ADS  Google Scholar 

  14. A.E. Vasdekis, M.J. Wilkins et al., Solvent immersion imprint lithography. Lab Chip 14(12), 2072–2080 (2014)

    Article  Google Scholar 

  15. S. Agarwala, G.L. Goh et al., Development of bendable strain sensor with embedded microchannels using 3D printing. Sens. Actuators A- Phys. 263, 593–599 (2017)

    Article  Google Scholar 

  16. N.G. Batz, J.S. Mellors et al., Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry. Anal. Chem. 86(7), 3493–3500 (2014)

    Article  Google Scholar 

  17. A. Daridon, V. Fascio et al., Multi-layer microfluidic glass chips for microanalytical applications. J. Anal. Chem. 371(2), 261–269 (2001)

    Google Scholar 

  18. J. Wu, R. Chantiwas et al., Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps. Lab Chip 11(17), 2984–2989 (2011)

    Article  Google Scholar 

  19. H. Cheng, C. Han et al., Sensitivity enhancement by field-amplified sample injection in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry for bromine speciation in bread. Food Anal. Method 7(10), 2153–2162 (2014)

    Article  Google Scholar 

  20. L. Griscom, P. Degenaar et al., Cell placement and neural guidance using a three-dimensional microfluidic array[J]. Jpn. J. Appl. Phys. 40(1), 5485–5490 (2001)

    Article  ADS  Google Scholar 

  21. J.R. Wu, J. He et al., Robust hierarchical porous PTFE film fabricated via femtosecond laser for self-cleaning passive cooling. Nano Lett. 21(10), 4209–4216 (2021)

    Article  ADS  Google Scholar 

  22. S. Yang, K. Yin et al., Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. Nanoscale 11, 17607–17614 (2019)

    Article  Google Scholar 

  23. D. Chu, X. Sun et al., Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment. Soft Matter 15(37), 7398–7403 (2019)

    Article  ADS  Google Scholar 

  24. D. Chu, S.C. Singh et al., Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser Bessel beam on PTFE. Adv. Mater. Interfaces 6(14), 1900550 (2019)

    Article  Google Scholar 

  25. M. Masuda, K. Sugioka et al., 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl. Phys. A-Mater. 76(5), 857–860 (2003)

    Article  ADS  Google Scholar 

  26. Y. Li, K. Itoh et al., Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett. 26(23), 1912–1914 (2001)

    Article  ADS  Google Scholar 

  27. Q. Sun, A. Saliminia et al., Microchannel fabrication in silica glass by femtosecond laser pulses with different central wavelengths. J. Micromech. Microeng. 18(3), 35039 (2008)

    Article  Google Scholar 

  28. Z. Wang, L. Jiang et al., High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching. Opt. Lett. 43(1), 98–101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. Liao, Y. Ju et al., Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing. Opt. Lett. 35(19), 3225–3227 (2010)

    Article  ADS  Google Scholar 

  30. D. Chu, X. Sun et al., Effect of double-pulse-laser polarization and time delay on laser-assisted etching of fused silica. J. Phys. D-Appl. Phys. 50(46), 465306 (2017)

    Article  ADS  Google Scholar 

  31. R. Wang, N. Sakai et al., Studies of surface wettability conversion on TiO2 Single-Crystal Surfaces. J. Phys. Chem. B 103(12), 2188–2194 (1999)

    Article  Google Scholar 

  32. D. Chu, P. Yao et al., Anti-reflection silicon with self-cleaning processed by femtosecond laser. Opt. Laser Technol. 136, 106790 (2021)

    Article  Google Scholar 

  33. J. Long, M. Zhong et al., Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J. Colloid Interface Sci. 441, 1–9 (2015)

    Article  ADS  Google Scholar 

  34. X. Jia, Y. Chen et al., Advances in laser drilling of structural ceramics. Nanomaterials 12, 230 (2022)

    Article  Google Scholar 

  35. K. Ding, M. Li et al., Sequential evolution of colored copper surface irradiated by defocused femtosecond laser. Adv. Eng. Mater. 22, 1901310 (2020)

    Article  Google Scholar 

  36. C. Wang, Y. Tian et al., Convex grid-patterned microstructures on silicon induced by femtosecond laser assisted with chemical etching. Opt. Laser Technol. 119, 105663 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this work are funded by the National Natural Science Foundation of China (nos. 52075302, 51875321), the Shandong Provincial Natural Science Foundation (no. ZR2021QE247), the Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University (Kfkt2020-09) and the Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongkai Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, D., Li, W., Qu, S. et al. Reusable microfluidic chip processed by femtosecond double-pulse-assisted polarization-selective etching in fused silica glass. J Opt 52, 216–223 (2023). https://doi.org/10.1007/s12596-022-00872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00872-6

Keywords

Navigation