Skip to main content
Log in

Longitudinal characterization of fiber Bragg gratings

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The proposed Fiber Bragg Grating (FBG) sensor investigated spectral features applying finite element numerical (FEM) analysis method. The wave optics module applied the Maxwell’s equations and confined the electromagnetic perfectly. The best optimized chosen parameters are 1.45, 1.5 for clad and core refractive indices, respectively, for a better FWHM of 20 nm approximately with the highest reflectivity of 93.5%. As a sensor, the FBG is developed in a D form with optimum specifications. An etched FBG's sensitivity to the surrounding medium's refractive index (RI) has been documented. For the analyte index (AI) range of 1.3–1.39 by 9 um etching diameter, the optimal wavelength sensitivity (WS) and resolution are 118.7 nm/RIU and 1 × 10−3 RIU, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 15(8), 1263–1276 (1997). https://doi.org/10.1109/50.618320

    Article  ADS  Google Scholar 

  2. S.R. Tahhan, M.H. Ali, A.K. Abass, Characteristics of dispersion compensation for 32 channels at 40 Gb/s under different techniques. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0121

    Article  Google Scholar 

  3. C.F. Chan, G.A. Ferrier, D.J. Thomson, T. Coroy, P. Lefebvre, A. Vincelette, Evanescent field fiber Bragg grating sensors for index of refraction sensing with applications to structural health monitoring. Nondestruct Eval. Heal. Monit. Aerosp. Mater Compos. Civ. Infrastruct V 6176, 617614 (2015). https://doi.org/10.1117/12.655702

    Article  Google Scholar 

  4. A. Othonos, K. Kalli, D. Pureur, A. Mugnier, Fibre Bragg gratings. Springer Ser. Opt. Sci. 123, 189–269 (2006). https://doi.org/10.1007/3-540-31770-8_6

    Article  Google Scholar 

  5. C.M. DeCusatis, C.J. Sher DeCusatis, Fiber optic essentials (Elsevier, Hoboken, 2006), pp. 20–21

    Google Scholar 

  6. S.R. Tahhan, R.Z. Chen, S. Huang, K.I. Hajim, K.P. Chen, Fabrication of fiber Bragg grating coating with TiO2 nanostructured metal oxide for refractive index sensor. J. Nanotechnol. (2017). https://doi.org/10.1155/2017/2791282

    Article  Google Scholar 

  7. M.M. Werneck, R.C.S.B. Allil, B.A. Ribeiro, F.V.B. de Nazaré, A guide to fiber bragg grating sensors in current trends in short- and long-period fiber Gratings (IntechOpen, London, 2013)

    Google Scholar 

  8. S. Dewra, A. Grover, Fabrication and application of fiber Bragg grating - A Review. Adv. Eng. Tec. Appl. 4(2), 15–25 (2015). https://doi.org/10.12785/aeta/040202

    Article  Google Scholar 

  9. Z. Zhou, J. Ou, Development of FBG sensors for structural health monitoring in civil infrastructures. Sens. Issues Civ. Struct. Heal. Monit. (2005). https://doi.org/10.1007/1-4020-3661-2_20

    Article  Google Scholar 

  10. D. Tosi, S. Poeggel, I. Iordachita, E. Schena, Fiber optic sensors for biomedical applications (Elsevier, Hoboken, 2018), pp. 301–333. https://doi.org/10.1016/B978-0-12-803131-5.00011-8

    Book  Google Scholar 

  11. S.R. Tahhan, A.K. Abass, M.H. Ali, Characteristics of chirped fiber bragg grating dispersion compensator utilizing two apodization profiles. J. Commun. 13(3), 108 (2018). https://doi.org/10.12720/jcm.13.3.108-113

    Article  Google Scholar 

  12. C.E. Campanella, A. Cuccovillo, C. Campanella, A. Yurt, V.M.N. Passaro, Fibre Bragg Grating based strain sensors: review of technology and applications. Sensors (Switzerland) 18(9), 3115 (2018)

    Article  ADS  Google Scholar 

  13. C. Gavrila and I. Lancranjan, “A Study of Optical Sensor Based on Fiber Bragg Grating (FBG) Using COMSOL Multiphysics,” COMSOL 2009 International Conference, (2009)

  14. A. Iadicicco, A. Cusano, G. Persiano, A. Cutolo, R. Bernini, M. Giordano, Refractive index measurements by fiber Bragg grating sensor. Proc. IEEE Sens. 2(1), 101–105 (2003). https://doi.org/10.1109/ICSENS.2003.1278905

    Article  Google Scholar 

  15. N. Dediyagala, “Optical fibre Bragg grating analysis through fea and its application to pressure sensing,” PhD thesis, Victoria University, (2019). https://vuir.vu.edu.au/39484/

  16. A.A.M. Network, E. Dep, Fiber Bragg grating in biomedical application. Al-Nahrain J. Eng. Sci. 20(3), 636–640 (2021)

    Google Scholar 

  17. C. Jesus, P. Caldas, O. Frazão, J.L. Santos, P.A.S. Jorge, J.M. Baptista, Simultaneous measurement of refractive index and temperature using a hybrid fiber Bragg grating/long-period fiber grating configuration. Fiber Integr. Opt. 28(6), 440–449 (2009). https://doi.org/10.1080/01468030903290039

    Article  Google Scholar 

  18. M.R.A. Hassan, M.H.A. Bakar, K. Dambul, F.R.M. Adikan, Optical-based sensors for monitoring corrosion of reinforcement rebar via an etched Cladding Bragg grating. Sensors (Switzerland) 12(11), 15820–15826 (2012). https://doi.org/10.3390/s121115820

    Article  ADS  Google Scholar 

  19. Z.L. Poole et al., Block copolymer assisted refractive index engineering of metal oxides for applications in optical sensing. Nanophoton. Mater 9161, 91610P (2014)

    Google Scholar 

  20. H. J. Kalinowski, J. Filipe Kuhne, R. Battistella Nadas, P. Loren Inácio, I. Chiamenti, and R. Canute Kamikawachi, “Refractive index sensitivity in etched FBG in the visible range,” no. 114, (2017) https://doi.org/10.1117/12.2272227

  21. K. Ahmed et al., Highly sensitive twin resonance coupling refractive index sensor based on gold- and MgF2-coated nano metal films. Biosens 11, 104 (2021). https://doi.org/10.3390/BIOS11040104

    Article  Google Scholar 

  22. M.A. Jabin et al., Design and fabrication of amoeba faced photonic crystal fiber for biosensing application. Sens. Actuat. A Phys. 313, 112204 (2020). https://doi.org/10.1016/J.SNA.2020.112204

    Article  Google Scholar 

  23. H. Abdullah, K. Ahmed, S.A. Mitu, Ultrahigh sensitivity refractive index biosensor based on gold coated nano-film photonic crystal fiber. Results Phys. 17, 103151 (2020). https://doi.org/10.1016/J.RINP.2020.103151

    Article  Google Scholar 

  24. M.S. Khan, K. Ahmed, M.N. Hossain, B.K. Paul, T.K. Nguyen, V. Dhasarathan, Exploring refractive index sensor using gold coated D-shaped photonic crystal fiber for biosensing applications. Optik (Stuttg) (2020). https://doi.org/10.1016/J.IJLEO.2019.163649

    Article  Google Scholar 

  25. H. Thenmozhi, M.S. Mani Rajan, K. Ahmed, D-shaped PCF sensor based on SPR for the detection of carcinogenic agents in food and cosmetics. Optik (Stuttg) 180, 264–270 (2019). https://doi.org/10.1016/J.IJLEO.2018.11.098

    Article  ADS  Google Scholar 

  26. M.N. Hossen, M. Ferdous, M. Abdul Khalek, S. Chakma, B.K. Paul, K. Ahmed, Design and analysis of biosensor based on surface plasmon resonance. Sens. Bio-Sens. Res. 21, 1–6 (2018). https://doi.org/10.1016/J.SBSR.2018.08.003

    Article  Google Scholar 

  27. K. Ahmed et al., Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application. Results Phys. 12, 2021–2025 (2019). https://doi.org/10.1016/J.RINP.2019.02.026

    Article  ADS  Google Scholar 

  28. M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, Y. Luo, D. Vigneswaran, Titanium-coated dual-core D-shaped SPR-based PCF for hemoglobin sensing. Plasmon 14(6), 1601–1610 (2019). https://doi.org/10.1007/S11468-019-00961-6

    Article  Google Scholar 

  29. S.A. Mitu, K. Ahmed, F.A. Al Zahrani, A. Grover, M.S. Mani Rajan, M.A. Moni, Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing. Opt. Lasers Eng. 140, 106551 (2021). https://doi.org/10.1016/J.OPTLASENG.2021.106551

    Article  Google Scholar 

  30. S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar, “Highly sensitive simple structure circular photonic crystal fiber based chemical sensor”, 2015 IEEE Int. WIE Conf. Electr. Comput. Eng. WIECON-ECE 2015, 151–154 (2016). https://doi.org/10.1109/WIECON-ECE.2015.7443884

    Article  Google Scholar 

  31. A.A. Rifat, K. Ahmed, S. Asaduzzaman, B.K. Paul, R. Ahmed, Development of photonic crystal fiber-based gas/chemical sensors. Comput. Photon. Sens. (2019). https://doi.org/10.1007/978-3-319-76556-3_12

    Article  Google Scholar 

  32. S. Tahhan, A. Ghazai, I. Alwan, M. Ali, Investigation of the characteristics of high-resistivity silica based hybrid porous core photonic crystal fiber for terahertz wave guidance. Dig. J. Nanomater Biostruct. 14(3), 831–841 (2019)

    Google Scholar 

  33. A.N. Chryssis, S.M. Lee, S.B. Lee, S.S. Saini, M. Dagenais, High sensitivity evanescent field fiber Bragg grating sensor. IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005). https://doi.org/10.1109/LPT.2005.846953

    Article  ADS  Google Scholar 

  34. N. Chen, B. Yun, Y. Cui, Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing. Appl. Phys. Lett. 88(13), 13–15 (2006). https://doi.org/10.1063/1.2191951

    Article  Google Scholar 

  35. X. Li et al., Novel refractive index sensor based on fiber bragg grating in nano-bore optical fiber. Opt. Quantum Electron (2019). https://doi.org/10.1007/s11082-019-1836-6

    Article  Google Scholar 

  36. W. Liang, Y. Huang, Y. Xu, R.K. Lee, A. Yariv, Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 86(15), 1–3 (2005). https://doi.org/10.1063/1.1904716

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contributions in this manuscript.

Corresponding author

Correspondence to Shaymaa R. Tahhan.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahhan, S.R., Hasen, F. Longitudinal characterization of fiber Bragg gratings. J Opt 52, 50–59 (2023). https://doi.org/10.1007/s12596-022-00844-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-00844-w

Keywords

Navigation