Skip to main content

Design and numerical analysis of a dispersion-flattened fabrication-friendly PCF-based THz waveguide


This paper presents the modeling and numeric analysis of a PCF model. This model is designed for the application in THz transmission. The model includes only rectangles in its structure where 24 thin rectangles form the porous core at the center of the PCF. Using the finite element method, multiple performance metrics have been investigated for this THz waveguide. Simulation of the model has been carried out in one THz bandwidth starting from 0.5 THz. The core of the proposed PCF-based waveguide carries a high power fraction of about 67.83% at 1.3 THz. This model has a high effective area of about 3.92 × 106 µm2 at the same point of interest. Besides, this model has a high numerical aperture of 0.204, a very low EML of 0.0022 cm−1, and low dispersion of ± 0.0466 ps/THz/cm at 1.3 THz. In addition, existing fabrication methods can be exercised to implement this waveguide.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Availability of data and material

Data corresponding to this study are described in this manuscript.


  1. Y. Li, C. Wang, N. Zhang, C.-Y. Wang, Q. Xing, Analysis and design of terahertz photonic crystal fibers by an effective-index method. Appl. Opt. 45, 8462–8465 (2006)

    Article  ADS  Google Scholar 

  2. A. Ferrando, E. Silvestre, P. Andres, J.J. Miret, M.V. Andrés, Designing the properties of dispersion-flattened photonic crystal fibers. Opt. Express 9, 687–697 (2001)

    Article  ADS  Google Scholar 

  3. J. Luo, F. Tian, H. Qu, L. Li, J. Zhang, X. Yang, L. Yuan, Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence. Appl. Opt. 56, 6993–7001 (2017)

    Article  ADS  Google Scholar 

  4. N. Janrao, V. Janyani, Dispersion compensation fiber using square hole PCF. In 2011 International Conference on Communications and Signal Processing, p 436-438 (2011)

  5. N. Janrao, S.K. Metya, V. Janyani, New geometry of photonic crystal fiber for improved dispersion compensation. J. Mod. Opt. 60, 467–473 (2013)

    Article  ADS  Google Scholar 

  6. S.F. Kaijage, Z. Ouyang, X. Jin, Porous-core photonic crystal fiber for low loss terahertz wave guiding. IEEE Photon. Technol. Lett. 25(15), 1454–1457 (2013)

    Article  ADS  Google Scholar 

  7. R. Islam, M.S. Habib, G. Hasanuzzaman, R. Ahmad, S. Rana, S.F. Kaijage, Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime. IEEE Photon. Technol. Lett. 27(21), 2222–2225 (2015)

    Article  ADS  Google Scholar 

  8. M.R. Hasan, M.S. Anower, M.A. Islam, S. Razzak, Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl. Opt. 55(15), 4145–4152 (2016)

    Article  ADS  Google Scholar 

  9. R. Islam, M.S. Habib, G. Hasanuzzaman, S. Rana, M.A. Sadath, Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance. Opt. Lett. 41(3), 440–443 (2016)

    Article  ADS  Google Scholar 

  10. R. Islam, M.S. Habib, G. Hasanuzzaman, S. Rana, M.A. Sadath, C. Markos, A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission. IEEE Photon. Technol. Lett. 28(14), 1537–1540 (2016)

    Article  ADS  Google Scholar 

  11. Z. Wu, Z. Shi, H. Xia, X. Zhou, Q. Deng, J. Huang, X. Jiang, W. Wu, Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photon. J. 8(6), 1–11 (2016)

    Google Scholar 

  12. K. Ahmed, S. Chowdhury, B.K. Paul, M.S. Islam, S. Sen, M.I. Islam, S. Asaduzzaman, Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56(12), 3477–3483 (2017)

    Article  ADS  Google Scholar 

  13. S. Rana, A.S. Rakin, H. Subbaraman, R. Leonhardt, D. Abbott, Low loss and low dispersion fiber for transmission applications in the terahertz regime. IEEE Photonics Technol. Lett. 29(10), 830–833 (2017)

    Article  ADS  Google Scholar 

  14. M.S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M.R. Islam, B.W.-H. Ng, D. Abbott, Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl. Opt. 57(4), 666–672 (2018)

    Article  ADS  Google Scholar 

  15. B. Kumar Paul, M. Haque, K. Ahmed, S. Sen, A novel hexahedron photonic crystal fiber in terahertz propagation: design and analysis. In Proceedings of the of Photonics, p 32 (2019)

  16. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H.K. Rasmussen, O. Bang, Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7(1), 286–295 (2017)

    Article  ADS  Google Scholar 

  17. A. Ghazanfari, W. Li, M.C. Leu, G.E. Hilmas, A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit. Manuf. 15, 102–112 (2017)

    Google Scholar 

  18. R.T. Bise, D.J. Trevor, Sol-gel derived microstructured fiber: fabrication and characterization. In Proceedings of Optical Fiber Communication Conference, OWL6 (2005)

  19. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, T.M. Monro, 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Express 4(8), 1494–1504 (2014)

    Article  ADS  Google Scholar 

  20. P. Zhang, J. Zhang, P. Yang, S. Dai, X. Wang, W. Zhang, Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling. Opt. Fiber Technol. 26, 176–179 (2015)

    Article  ADS  Google Scholar 

  21. T. Yang, C. Ding, R.W. Ziolkowski, Y.J. Guo, A terahertz (THz) single-polarization-single-mode (SPSM) photonic crystal fiber (PCF). Mater. 12(15), 2442 (2019)

    Article  Google Scholar 

  22. Y. Tan, H. Wang, Y. Wang, Calculation of effective mode field area of photonic crystal fiber with digital image processing algorithm. Comput. Opt. 42(5), 812 (2018)

    Article  ADS  Google Scholar 

  23. A.A.-M. Bulbul, A.Z. Kouzani, M. Mahmud, A.-A. Nahid, Design and numerical analysis of a novel rectangular PCF (R-PCF)-based biochemical sensor (BCS) in the THz regime. Int. J. Opt. 2021, 1–16 (2021)

    Article  Google Scholar 

  24. A.A.-M. Bulbul, R.H. Jibon, S. Biswas, S.T. Pasha, M.A. Sayeed, Photonic crystal fiber-based blood components detection in THz regime: design and simulation. Sens. Int. 2, 100081 (2021)

    Article  Google Scholar 

  25. A.A.-M. Bulbul, F. Imam, M. Awal, M. Mahmud, A Novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis. Sensors 20(22), 6500 (2020)

    Article  ADS  Google Scholar 

  26. G. Hasanuzzaman, M.S. Habib, S.A. Razzak, M.A. Hossain, Y. Namihira, Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)

    Article  ADS  Google Scholar 

Download references


The authors show thankfulness to the ECE Discipline of Khulna University, Bangladesh.


This study was funded by the UGC, Bangladesh (Research Code: 3631108) under BSMRSTU, Bangladesh.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abdullah Al-Mamun Bulbul.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Ethics approval

This study does not require ethical approval as it has not used any human participant. This paper contains original research and has not been published earlier in any journal and is not being considered for publication elsewhere.

Consent to participate

Not applicable as this study does not involve any human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imam, F., Biswas, S., Shahjahan, M. et al. Design and numerical analysis of a dispersion-flattened fabrication-friendly PCF-based THz waveguide. J Opt 51, 371–378 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Dispersion
  • EML
  • PCF
  • Power fraction
  • THz transmission
  • Waveguide