Skip to main content

Advertisement

Log in

Investigation the absorption efficiency of InGaP nanowire solar cells

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This work presents the influence of geometrical parameters on the absorption efficiency (Qabs), external quantum efficiencies (EQEs), and short-circuit current (JSC), and the efficiency of InGaP cylindrical core–shell nanowire (NW) solar cells with a circular cross-section was investigated. Numerical results obtained through finite-difference time-domain simulation showed that NW diameters ranging from 100 to 200 nm affected the absorption efficiency of the solar cells and leading to higher short-circuit current densities. The results enhance the efficiency of the solar cell that can be controlled by tuning the physical dimensions of InGaP NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Cao, S.L. White, S.J. Park, A.J. Schuller, M.B. Clemens, L.M. Brongersma, Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 8, 643–647 (2009)

    Article  ADS  Google Scholar 

  2. Y. Zhang, J. Wu, M. Aagesen, H. Liu, III–V nanowires and nanowire optoelectronic devices. J. Phys. D: Appl. Phys. 48, 463001 (2015)

    Article  ADS  Google Scholar 

  3. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 24, 905–913 (2016)

    Article  Google Scholar 

  4. H. Zhang, J. Toudert, Optical management for efficiency enhancement in hybrid organic-inorganic lead halide perovskite solar cells. Sci. and Technol. of Adv. Mater. 19, 411–424 (2018)

    Article  ADS  Google Scholar 

  5. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010)

    Article  ADS  Google Scholar 

  6. W. Yao, Y. Xin, Z. Xia, R. Xiaomin, Light absorption properties of a nanowire/quantum-dot hybrid, nanostructure array. Optics Communic. 420, 104–109 (2018)

    Article  Google Scholar 

  7. R. Yu, Q. Lin, S.F. Leung, Z. Fan, Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energ. 1, 57–72 (2012)

    Article  Google Scholar 

  8. R.J. Jam, M. Heurlin, V. Jain, A. Kvennefors, M. Graczyk, I. Maximov, M.T. Borgström, H. Pettersson, L. Samuelson, III–V nanowire synthesis by use of electrodeposited gold particles. Nano Lett. 15, 134–138 (2014)

    ADS  Google Scholar 

  9. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249–3252 (2007)

    Article  ADS  Google Scholar 

  10. E. Nikkei, M. Yoshimura, K. Tomioka, T. Fukui, GaAs/InGaP core–multishell nanowire-array-based solar cells. Japanese J. Appl. Phys. 52, 055002 (2013)

    Article  ADS  Google Scholar 

  11. S. Adachi, Optical properties of In (1–x) GaxAsyP (1-y) alloys. Phys. Rev. B 39, 12612–12621 (1989)

    Article  ADS  Google Scholar 

  12. A. Bensaada, J.T. Graham, J.L. Brebner, A. Chennouf, R.W. Cochrane, R. Leonelli, Band alignment in GaxIn1-xP/InP heterostructures. Appl. Phys. Lett. 64, 273–275 (1994)

    Article  ADS  Google Scholar 

  13. N. Anttu, Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays. Optics Lett. 38, 730–732 (2013)

    Article  ADS  Google Scholar 

  14. U.P. Gomes, D. Ercolani, V. Zannier, F. Beltram, L. Sorba, Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods. Semicond. Sci. Technol. 30, 115012 (2015)

    Article  ADS  Google Scholar 

  15. H. Ye, P. Lu, Z. Yu, Y. Song, D. Wang, S. Wang, Critical thickness and radius for axial heterostructure nanowires using finite-element method. Nano Lett (2009). https://doi.org/10.1021/nl900055x

    Article  Google Scholar 

  16. F.A. Abed, L.M. Ali, Investigation the absorption efficiency of GaAs/InAs nanowire solar cells. J. Luminescence 237, 118171 (2021)

    Article  ADS  Google Scholar 

  17. L.M. Ali, F.A. Abed, Optic. Quant. Electron. 154, 52 (2020)

    Google Scholar 

  18. X. Yan, X. Zhang, X. Ren, X. Lv, J. Li, Q. Wang, S. Cai, Y. Huang, Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires. Nano Lett. 12, 1851–1856 (2012). https://doi.org/10.1021/nl204204f

    Article  ADS  Google Scholar 

  19. R.R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J Appl Phys 109, 034311 (2011). https://doi.org/10.1063/1.3544486

    Article  ADS  Google Scholar 

  20. U. Wurfel, D. Neher, A. Spies, S. Albrecht, Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Communications 6, 6951 (2015)

    Article  ADS  Google Scholar 

  21. H.J. Joyce, C.J. Docherty, Q. Gao, H.H. Tan, C. Jagadish, J. Lloyd-Hughes, L.M. Herz, M.B. Johnston, Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy. Nanotechnology 24, 214006 (2013)

    Article  ADS  Google Scholar 

  22. X. Li, Y. Zhan, Enhanced external quantum efficiency in rectangular single nanowire solar cells. Appl. Phys. Lett. 102, 021101 (2013)

    Article  ADS  Google Scholar 

  23. M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters: Ternary and Quaternary III-V Compounds (World Scientific, Singapore, 1999)

    Google Scholar 

  24. L.M. Ali, F.A. Abed, Investigation the absorption efficiency of GaAs/InGaAs nanowire solar cells. Optic. Matera. 72, 650–653 (2017)

    Article  ADS  Google Scholar 

  25. E.D. Palik, Handbook of Optical Constants of Solids (Academic, USA, 1985)

    Google Scholar 

  26. O.G. Keat, V.K. Oomman, M.K. Gopal, S. Karthik, G.A. Craig, Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption. Sol. Energy Mater. Sol. Cell. 91, 250–257 (2007)

    Article  Google Scholar 

  27. Z. Mauro, S. Igor, M. Jérôme, S. Enrico, F. Claudio, Advanced electro-optical simulation of nanowire-based solar cells. J. of Computa. Electron. 2, 572–584 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah A. Abed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed, F.A. Investigation the absorption efficiency of InGaP nanowire solar cells. J Opt 51, 161–164 (2022). https://doi.org/10.1007/s12596-021-00761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00761-4

Keywords

Navigation