Skip to main content
Log in

Fluid–structure interaction analysis of alteration of the intraocular pressure on the optic nerve head in glaucoma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Alteration of the intraocular pressure (IOP) has an important role in the development of glaucomatous optic neuropathy, especially at the level of the lamina cribrosa. The stresses and strains at the head of the optic nerve, where it attaches to the sclera, develop the glaucoma in the eye. Although so far several studies were conducted to study the effects of IOP on the optic nerve head (ONH) biomechanics in glaucoma, there is still a lack of information about the magnitudes of the stresses and strains at the ONH connection to sclera position in the presence of all the components of the eye. This study, therefore, intended to investigate the IOP-related stress and strain on the ONH in glaucoma. To do that, our well-established fluid–structure interaction model of the eye was employed and the IOP of 5 kPa (37.50 mmHg) was applied to the interior surface of the sclera, where the vitreous body is in interaction with the eye components. The results showed that stress and strain of 31.97 kPa and 0.37%, respectively, at the ONH to sclera position. The highest stress and strain of 217.60 kPa and 15.07%, respectively, were observed in the anterior of the eye globe, where the lens, ciliary body, iris, aqueous body, and cornea are located. These results could be used not only for understanding of the stresses and strains of the eye globe in glaucoma, but also give comprehensive information to the ophthalmologists to clarify the impact of a high IOP on the stress and strain of the ONH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Wang, H. Tran, M.A. Smith, T. Kostanyan, S.E. Schmitt, R.A. Bilonick, N.-J. Jan, L. Kagemann, E.C. Tyler-Kabara, H. Ishikawa, J.S. Schuman, I.A. Sigal, G. Wollstein’, In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. PloS One 12, 11 (2017)

    Google Scholar 

  2. J.C. Downs, C.A. Girkin, Lamina cribrosa in glaucoma. Curr. Opin. Ophthalmol. 28, 2 (2017)

    Article  Google Scholar 

  3. H.A. Quigley, E.M. Addicks, W.R. Green, A.E. Maumenee, Optic nerve damage in human glaucoma: Ii. the site of injury and susceptibility to damage. Arch. Ophthalmol. 99, 4 (1981)

    Google Scholar 

  4. Y.H. Kwon, J.H. Fingert, M.H. Kuehn, W.L.M. Alward, Primary open-angle glaucoma. New Eng. J. Med. 360, 11 (2009)

    Article  Google Scholar 

  5. B. Bengtsson, A. Heijl, A long-term prospective study of risk factors for glaucomatous visual field loss in patients with ocular hypertension. J. Glaucoma. 14, 2 (2005)

    Article  Google Scholar 

  6. C.F. Burgoyne, J. Crawford-Downs, A.J. Bellezza, J.K. Francis-Suh, R.T. Hart, ’The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye. Res. 24, 1 (2005)

    Article  Google Scholar 

  7. J.C. Downs, M.D. Roberts, C.F. Burgoyne, Mechanical environment of the optic nerve head in glaucoma. Optom. Vis. Sci. 85, 6 (2008)

    Article  Google Scholar 

  8. C.F. Burgoyne, A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp. Eye Res. 93, 2 (2011)

    Article  Google Scholar 

  9. I.A. Sigal, C.R. Ethier, Biomechanics of the optic nerve head. Exp. Eye Res. 88, 4 (2009)

    Article  Google Scholar 

  10. I.D. Aires, A.F. Ambrósio, A.R. Santiago, Modeling human glaucoma: lessons from the in vitro Models. Ophthalmic. Res. 57, 2 (2017)

    Article  Google Scholar 

  11. M. Ishikawa, T. Yoshitomi, C.F. Zorumski, Y. Izumi’, experimentally induced mammalian models of glaucoma. Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/281214

    Article  Google Scholar 

  12. J.C. Morrison, W.O. Cepurna, Y. Guo, E.C. Johnson, Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. Exp. Eye. Res. 93, 2 (2011)

    Article  Google Scholar 

  13. K.A. Fernandes, J.M. Harder, P.A. Williams, R.L. Rausch, A.E. Kiernan, K.S. Nair, M.G. Anderson, S.W. John, G.R. Howell, R.T. Libby’, Using genetic mouse models to gain insight into glaucoma: past results and future possibilities. Exp. Eye. Res. 141, 42 (2015)

    Article  Google Scholar 

  14. D. Goldblum, T. Mittag, Prospects for relevant glaucoma models with retinal ganglion cell damage in the rodent eye. Vis. Res. 42, 4 (2002)

    Article  Google Scholar 

  15. A. Karimi, R. Razaghi, M. Navidbakhsh, T. Sera, S. Kudo, Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid–structure interaction model. Injury 47, 5 (2016)

    Article  Google Scholar 

  16. A. Karimi, R. Razaghi, M. Navidbakhsh, T. Sera, S. Kudo, Computing the influences of different Intraocular pressures on the human eye components using computational fluid-structure interaction model. Technol. Health. Care. 25, 2 (2017)

    Article  Google Scholar 

  17. A. Karimi, R. Razaghi, M. Navidbakhsh, T. Sera, S. Kudo, Quantifying the injury of the human eye components due to tennis ball impact using a computational fluid–structure interaction model. Sports. Eng. 19, 2 (2016)

    Article  Google Scholar 

  18. A. Karimi, R. Grytz, S.M. Rahmati, C.A. Girkin, J.C. Downs’, Analysis of the effects of finite element type within a 3D biomechanical model of a human optic nerve head and posterior pole. Comput. Methods. Programs. Biomed. 198, 105794 (2021)

    Article  Google Scholar 

  19. A. Karimi, S.M. Rahmati, R.G. Grytz, C.A. Girkin, J.C. Downs, Modeling the biomechanics of the lamina cribrosa microstructure in the human eye. Acta Biomater. (2021). https://doi.org/10.1016/j.actbio.2021.07.010

    Article  Google Scholar 

  20. I.A. Sigal, J.G. Flanagan, I. Tertinegg, C.R. Ethier, Finite element modeling of optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 45, 12 (2004)

    Article  Google Scholar 

  21. I.A. Sigal, J.G. Flanagan, I. Tertinegg, C.R. Ethier, Predicted extension, compression and shearing of optic nerve head tissues. Exp. Eye. Res. 85, 3 (2007)

    Article  Google Scholar 

  22. A. Karimi, R. Razaghi, M. Navidbakhsh, T. Sera, S. Kudo’, Computing the influences of different intraocular pressures on the human eye components using computational fluid-structure interaction model. Technol. Health Care 25, 2 (2017)

    Article  Google Scholar 

  23. A. Karimi, R. Razaghi, S.M. Rahmati, T. Sera, S. Kudo, A nonlinear dynamic finite-element analyses of the basketball-related eye injuries. Sports. Eng. 21, 359 (2018)

    Article  Google Scholar 

  24. A. Karimi, R. Razaghi, T. Sera, S. Kudo, A combination of the finite element analysis and experimental indentation via the cornea. J. Mech. Behav. Biomed. Mater. 90, 146 (2019)

    Article  Google Scholar 

  25. A. Karimi, R. Razaghi, M. Navidbakhsh, T. Sera, S. Kudo, Mechanical properties of the human sclera under various strain rates: elastic, hyperelastic, and viscoelastic models. J. Biomater. Tissue. Eng. 7, 8 (2017)

    Article  Google Scholar 

  26. A. Karimi, N. Meimani, R. Razaghi, S.M. Rahmati, K. Jadidi, M. Rostami, Biomechanics of the healthy and keratoconic corneas: a combination of the clinical data, finite element analysis, and artificial neural network. Curr. Pharm. 24, 37 (2018)

    Google Scholar 

  27. J.O. Hallquist, LS-DYNA theory manual. Livermore software Technology Corporation 3, 25–31 (2006)

    Google Scholar 

  28. Y. Suzuki, A. Iwase, M. Araie, T. Yamamoto, H. Abe, S. Shirato, Y. Kuwayama, H.K. Mishima, H. Shimizu, G. Tomita, Y. Inoue, Y. Kitazawa, Risk factors for open-angle glaucoma in a Japanese population: the Tajimi study. Ophthalmology 113, 9 (2006)

    Article  Google Scholar 

  29. A. Karimi, R. Razaghi, H. Biglari, T. Sera, S. Kudo, Collision of the glass shards with the eye: a computational fluid-structure interaction model. J. Chem. Neuroanat. 90, 80 (2018)

    Article  Google Scholar 

  30. J.D. Stitzel, S.M. Duma, J.M. Cormier, I.P. Herring, A nonlinear finite element model of the eye with experimental validation for the prediction of globe rupture, SAE Conference proceedings P, SAE, 2002, pp. 81–102 (1999)

  31. J.J. Heys, V.H. Barocas, M.J. Taravella, Modeling passive mechanical interaction between aqueous humor and iris. J. Biomech. Eng. 123, 6 (2001)

    Article  Google Scholar 

  32. X. Liu, L. Wang, C. Wang, J. Fan, S. Liu, Y. Fan, Prediction of globe rupture caused by primary blast: a finite element analysis. Comput. Methods. Programs. Biomed. 18, 9 (2015)

    Google Scholar 

  33. I. Schoemaker, P.P. Hoefnagel, T.J. Mastenbroek, C.F. Kolff, S. Schutte, F.C. van der Helm, S.J. Picken, A.F. Gerritsen, P.A. Wielopolski, H. Spekreijse, Elasticity, viscosity, and deformation of orbital fat. Investig. Ophthalmol. Vis. Sci. 47, 11 (2006)

    Google Scholar 

  34. B. Lee, M. Litt, G. Buchsbaum’, Rheology of the vitreous body part i: viscoelasticity of human vitreous. Biorheology 29, 5 (1991)

    Google Scholar 

  35. J.C. Downs, Optic nerve head biomechanics in aging and disease. Exp. Eye. Res. 133, 19 (2015)

    Article  Google Scholar 

  36. J.C. Downs, M.D. Roberts, I.A. Sigal, Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp. Eye Res. 93, 2 (2011)

    Article  Google Scholar 

  37. B. Emara, L.E. Probst, D.P. Tingey, D.W. Kennedy, L.J. Willms, J. Machat’, Correlation of intraocular pressure and central corneal thickness in normal myopic eyes and after laser in situ keratomileusis. J. Cataract Refract. Surg. 24, 10 (1998)

    Article  Google Scholar 

  38. R. Grytz, G. Meschke, A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech. Model. Mechanobiol. 9, 2 (2010)

    Article  Google Scholar 

  39. R. Grytz, G. Meschke, J.B. Jonas, The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech. Model. Mechanobiol. 10, 3 (2011)

    Article  Google Scholar 

  40. R. Grytz, I.A. Sigal, J.W. Ruberti, G. Meschke, J.C. Downs, Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech. Mater. 44, 99 (2012)

    Article  Google Scholar 

  41. J.C. Downs, IOP telemetry in the nonhuman primate. Exp. Eye Res. 141, 91 (2015)

    Article  Google Scholar 

  42. J.C. Downs, C.F. Burgoyne, W.P. Seigfreid, J.F. Reynaud, N.G. Strouthidis, V. Sallee, 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Investig. Ophthalmol. Vis. Sci. 52, 10 (2011)

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Hassani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdel, A., Hassani, K. Fluid–structure interaction analysis of alteration of the intraocular pressure on the optic nerve head in glaucoma. J Opt 50, 523–528 (2021). https://doi.org/10.1007/s12596-021-00755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00755-2

Keywords

Navigation