Skip to main content
Log in

Vision of IoUT: advances and future trends in optical wireless communication

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Oceans cover about 72 percent of the Earth’s atmosphere. Owing to distinct incredible aquatic activities the Oceans remain unclear and deep-seated to investigate. “Underwater wireless communication” (UWC) plays an important role in sea species tracking, water contamination, oil and gas production, natural hazard control, maritime security, naval military activities, and in detecting improvements in the aquatic environment. To achieve these applications in an efficient way, a new era name Internet of Underwater Things (IoUT) is introduced. IoUT is a scientific development that could bring a new phase for research, business, and underwater military applications. It also severs as an important feature of 5G and 6G networking systems. The up-coming fifth (5G)- and sixth (6G)-generation connectivity networks are supposed to make tremendous improvement relative to the current fourth-generation systems with some essential and general problems about 5G coverage performance, 6G and high-ability networking networks, huge coverage, low latency, high protection, low power usage, strong knowledge, and stable networking. To encounter the obstacles in 5G networks, innovations like optical (OWC) communication by means of wireless means is utilized. Innovations such as optical wireless communication (OWC) are used to tackle the obstacles in 5G networks. OWC is a better employee for operation in 5G network specifications than other wireless technologies. This paper explains how the OWC strategy would be the best and most effective approach to effectively implement 5G, 6G, and IoUT networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Saeed, A. Celik, T.Y. Al-Naffouri, M.-S. Alouini, Underwater optical wireless communications, networking, and localization: a survey. Ad Hoc Netw 94, 101935 (2019). https://doi.org/10.1016/j.adhoc.2019.101935

    Article  Google Scholar 

  2. A. Celik, N. Saeed, B. Shihada, T.Y. Al-Naffouri, M. Alouini, A software-defined opto-acoustic network architecture for internet of underwater things. IEEE Commun. Mag. 58, 88–94 (2020)

    Article  Google Scholar 

  3. M. Erol-Kantarci, H.T. Mouftah, S. Oktug, A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun. Surv. Tutor. 13, 487–502 (2011)

    Article  Google Scholar 

  4. Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, J. Cheng, Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 33, 1738–1749 (2015)

    Article  Google Scholar 

  5. Z. Xu, B.M. Sadler, Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag. 46, 67–73 (2008)

    Article  Google Scholar 

  6. J.M. Kahn, J.R. Barry, Wireless infrared communications. Proc. IEEE 85, 265–298 (1997)

    Article  Google Scholar 

  7. P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun. Surv. Tutor. 17, 2047–2077 (2015)

    Article  Google Scholar 

  8. M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, G. Wunder, 5g: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35, 1201–1221 (2017)

    Article  Google Scholar 

  9. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5g be? IEEE J. Sel. Areas Commun. 32, 1065–1082 (2014)

    Article  Google Scholar 

  10. W.A. Hassan, H. Jo, A.R. Tharek, The feasibility of coexistence between 5g and existing services in the imt-2020 candidate bands in malaysia. IEEE Access 5, 14867–14888 (2017)

    Article  Google Scholar 

  11. A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A.U. Quddus, M.A. Imran, C.H. Foh, R. Tafazolli, Enabling massive iot in 5g and beyond systems: phy radio frame design considerations. IEEE Access 4, 3322–3339 (2016)

    Article  Google Scholar 

  12. K. David, H. Berndt, 6g vision and requirements: Is there any need for beyond 5g? IEEE Veh. Technol. Mag. 13, 72–80 (2018)

    Article  Google Scholar 

  13. F. Tariq, M. Khandaker, K.-K. Wong, M. Imran, M. Bennis, M. Debbah, A speculative study on 6g (2019).

  14. S.J. Nawaz, S.K. Sharma, S. Wyne, M.N. Patwary, M. Asaduzzaman, Quantum machine learning for 6g communication networks: state-of-the-art and vision for the future. IEEE Access 7, 46317–46350 (2019)

    Article  Google Scholar 

  15. R.-A. Stoica, G. Abreu, 6g: the wireless communications network for collaborative and ai applications (2019)

  16. W. Saad, M. Bennis, M. Chen, A vision of 6g wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 34, 134–142 (2020)

    Article  Google Scholar 

  17. D. Tsonev, S. Videv, H. Haas, Towards a 100 gb/s visible light wireless access network. Opt. Express 23, 1627 (2015). https://doi.org/10.1364/OE.23.001627

    Article  ADS  Google Scholar 

  18. M. Chowdhury, M.T. Hossan, M.K. Hasan, Y.M. Jang, Integrated rf/optical wireless networks for improving qos in indoor and transportation applications. Wireless Pers. Commun. (2018). https://doi.org/10.1007/s11277-018-5971-3

    Article  Google Scholar 

  19. S. Dimitrov, H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi (2015). doi:10.1017/CBO9781107278929

  20. H. Haas, L. Yin, Y. Wang, C. Chen, What is lifi? J. Lightwave Technol. 34, 1533–1544 (2016)

    Article  ADS  Google Scholar 

  21. M.K. Hasan, M. Chowdhury, M. Shahjalal, Y.M. Jang, Fuzzy based network assignment and link-switching analysis in hybrid occ/lifi system. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/2870518

    Article  Google Scholar 

  22. H. Lu, C. Li, H. Chen, C. Ho, M. Cheng, Z. Yang, C. Lu, A 56 gb/s pam4 vcsel-based lifi transmission with two-stage injection-locked technique. IEEE Photonics J. 9, 1–8 (2017)

    Google Scholar 

  23. M.T. Hossan, M. Chowdhury, M.K. Hasan, M. Shahjalal, T. Nguyen, N.-T. Le, Y.M. Jang, A new vehicle localization scheme based on combined optical camera communication and photogrammetry. Mob. Inf. Syst. 2018, 14 (2018). https://doi.org/10.1155/2018/8501898

    Article  Google Scholar 

  24. M. Shahjalal, M. T. Hossan, M. K. Hasan, M. Z. Chowdhury, N. T. Le, Y. M. Jang, An implementation approach and performance analysis of image sensor based multilateral indoor localization and navigation system, CoRR abs/1810.02600 (2018).

  25. P. Luo, S. Zvanovec, Optical Camera Communications, pp. 547–568 (2016).

  26. Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, K. Kamakura, A new automotive vlc system using optical communication image sensor. IEEE Photonics J. 8, 1–17 (2016)

    Article  Google Scholar 

  27. A. Malik, P. Singh, Free space optics: current applications and future challenges. Int. J. Opt. 2015, 1–7 (2015). https://doi.org/10.1155/2015/945483

    Article  Google Scholar 

  28. M.-A. Khalighi, M. Uysal, Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Amp Tutor. 16, 2231–2258 (2014). https://doi.org/10.1109/COMST.2014.2329501

    Article  Google Scholar 

  29. H. Kaushal, G. Kaddoum, Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19, 57–96 (2016). https://doi.org/10.1109/COMST.2016.2603518

    Article  Google Scholar 

  30. Z. Zeng, S. Fu, H. Zhang, Y. Dong, J. Cheng, A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19, 204–238 (2017)

    Article  Google Scholar 

  31. N. Saeed, A. C¸ elik, T. Al-Naffouri, M.-S. Alouini, Underwater optical wireless communications, networking, and localization: a survey (2018).

  32. C. Gussen, P. Diniz, M. Campos, W. Martins, F. Costa, J. Gois, A survey of underwater wireless communication technologies. J. Commun. Inf. Syst. 31, 242–255 (2016). https://doi.org/10.14209/jcis.2016.22

    Article  Google Scholar 

  33. H. Kaushal, G. Kaddoum, Underwater optical wireless communication. IEEE Access 4, 1518–1547 (2016)

    Article  Google Scholar 

  34. I. Akyildiz, D. Pompili, T. Melodia, Underwater acoustic sensor networks: research challenges. Ad HocNetworks 3, 257–279 (2005). https://doi.org/10.1016/j.adhoc.2005.01.004

    Article  Google Scholar 

  35. M. Rhodes, Electromagnetic propagation in sea water and its value in military systems, 2007.

  36. M. Domingo, An overview of the internet of underwater things. J. Netw. Comput. Appl. 35, 1879–1890 (2012). https://doi.org/10.1016/j.jnca.2012.07.012

    Article  Google Scholar 

  37. D. Bandyopadhyay, J. Sen, Internet of things: applications and challenges in technology and standardization, CoRR abs/1105.1693 (2011).

  38. I. Akyildiz, P. Wang, S.-C. Lin, Softwater: software-defined networking for next-generation underwater communication systems, Ad Hoc Networks 46 (2016). doi:https://doi.org/10.1016/j.adhoc.2016.02.016.

  39. R. Smith, K. Baker, Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20, 177–184 (1981). https://doi.org/10.1364/AO.20.000177

    Article  ADS  Google Scholar 

  40. Z. Zhu, W. Guan, L. Liu, S. Li, S. Kong, Y. Yan, A multi-hop localization algorithm in underwater wireless sensor networks, in 2014 6th International Conference on Wireless Communications and Signal Processing, WCSP 2014 (2014). Doi:https://doi.org/10.1109/WCSP.2014.6992019.

  41. I. Akyildiz, D. Pompili, T. Melodia, Challenges for efficient communication in underwater acoustic sensor networks, ACM SIGBED Review 1 (2004). Doi:https://doi.org/10.1145/1121776.1121779.

  42. A. Zoksimovski, C. Rappaport, D. Sexton, M. Stojanovic, Underwater electromagnetic communications using conduction—channel characterization, vol. 34 (2012). Doi:https://doi.org/10.1145/2398936.2398962.

  43. M. Z. Chowdhury, M. Shahjalal, S. Ahmed, Y. M. Jang, 6g wireless communication systems: Applications, requirements, technologies, challenges, and research directions (2019).

  44. K. David, H. Berndt, 6g vision and requirements: Is there any need for beyond 5g? IEEE Veh. Technol. Mag. 13(3), 72–80 (2018)

    Article  Google Scholar 

  45. J.N. Syed, S.K. Sharma, S. Wyne, M. Patwary, M. Asaduzzaman, Quantum machine learning for 6g communication networks: state-of-the-art and vision for the future. IEEE Access 7, 46317–46350 (2019). https://doi.org/10.1109/ACCESS.2019.2909490

    Article  Google Scholar 

  46. R.-A. Stoica, G. Abreu, 6g: the wireless communications network for collaborative and ai applications (2019).

  47. W. Saad, M. Bennis, M. Chen, A vision of 6g wireless systems: applications, trends, technologies, and open research problems (2019).

  48. S. Mumtaz, J. Jornet, J. Aulin, W. Gerstacker, X. Dong, B. Ai, Terahertz communication for vehicular networks. IEEE Trans. Veh. Technol. 66, 5617–5625 (2017). https://doi.org/10.1109/TVT.2017.2712878

    Article  Google Scholar 

  49. L. Lov´en, T. Lepp¨anen, E. Peltonen, J. Partala, E. Harjula, P. Porambage, M. Ylianttila, J. Riekki, Edgeai:A vision for distributed, edge-native artificial intelligence in future 6g networks (2019).

  50. F. Clazzer, A. Munari, G. Liva, F. Lazaro, Stefanovi´c, P. Popovski, From 5g to 6g: Has the time for modern random access come? (2019).

  51. M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, Towards 6g networks: Use cases and technologies (2019).

  52. L. G. J.-D. Lee, Juho, 5g: Vision and requirements for mobile communication system towards year 2020, Chinese Journal of Engineering (2016). Doi: https://doi.org/10.1155/2016/5974586.

  53. P. Hu, P. Pathak, A. Das, Z. Yang, P. Mohapatra, Plifi: hybrid wifi-vlc networking using power lines, pp. 31–36 (2016). Doi:https://doi.org/10.1145/2981548.2981549.

  54. Z. Du, W. Chunxi, S. Youming, G. Wu, Context-aware indoor vlc/rf heterogeneous network selection: Reinforcement learning with knowledge transfer, IEEE Access PP (2018). Doi:https://doi.org/10.1109/ACCESS.2018.2844882.

  55. T. Koonen, Indoor optical wireless systems: technology, trends and applications. J. Lightwave Technol. pp. 1–1 (2017). Doi:https://doi.org/10.1109/JLT.2017.2787614.

  56. C. Danakis, M. Afgani, G. Povey, I. Underwood, H. Haas, Using a cmos camera sensor for visible light communication, pp. 1244–1248 (2012). Doi:https://doi.org/10.1109/GLOCOMW.2012.6477759.

  57. H.-M. Tsai, H.-M. Lin, H.-Y. Lee, Demo: Rollinglight—universal camera communications for single led (2014). Doi:https://doi.org/10.1145/2639108.2641748.

  58. M. Chowdhury, M. Shahjalal, M.K. Hasan, Y.M. Jang, The role of optical wireless communication technologies in 5g/6g and iot solutions: Prospects, directions, and challenges. Appl. Sci. 9, 4367 (2019). https://doi.org/10.3390/app9204367

    Article  Google Scholar 

  59. T. Perera, D. N. Jayakody, S. K. Sharma, S. Chatzinotas, J. Li, Simultaneous wireless information and power transfer (swipt): Recent advances and future challenges. IEEE Commun. Surv. Tutor. PP (2018). Doi:https://doi.org/10.1109/COMST.2017.2783901.

  60. X. Chen, D. W. K. Ng, H.-H. Chen, Secrecy wireless information and power transfer: Challenges and opportunities. IEEE Wireless Commun. 23 (2015). Doi:https://doi.org/10.1109/MWC.2016.7462485.

  61. I.-J. Yoon, Wireless power transfer in the radiating near-field region, pp. 344–344 (2015). Doi:https://doi.org/10.1109/USNC- URSI.2015.7303628.

  62. B. Srujana, P. Neha, H. Mathews, Govindan, Multi-source energy harvesting system for underwater wireless sensor networks. Procedia Computer Science 46, 1041–1048 (2015). https://doi.org/10.1016/j.procs.2015.01.015

    Article  Google Scholar 

  63. A.-N. T. A. M. Saeed N, Celik A, Energy harvesting hybrid acoustic-optical underwater wireless sensor networks localization, Sensors (Basel) (2017).

  64. W. Ding, B. Song, M. Zhaoyong, K. Wang, Experimental investigation on an ocean kinetic energy harvester for underwater gliders, pp. 1035–1038 (2015). Doi:https://doi.org/10.1109/ECCE.2015.7309802.

  65. D. Gesbert, M. Kountouris, R. Heath, C.-B. Chae, T. S¨alzer, From single user to multiuser communications: Shifting the mimo paradigm, IEEE Signal Process. Mag. vol 24 (2007).

  66. J. Cheon, H.-S. Cho, Power allocation scheme for non-orthogonal multiple access in underwater acoustic communications. Sensors 17, 2465 (2017). https://doi.org/10.3390/s17112465

    Article  ADS  Google Scholar 

  67. C. Geldard, J. Thompson, W. Popoola, A study of non-orthogonal multiple access in underwater visible light communication systems, pp. 1–6(2018). Doi:https://doi.org/10.1109/VTCSpring.2018.8417835.

  68. D. Wan, M. Wen, F. Ji, H. Yu, F. Chen, Non-orthogonal multiple access for cooperative com—munications: challenges, opportunities, and trends. IEEE Wireless Commun. vol 25 (2018). Doi:https://doi.org/10.1109/MWC.2018.1700134.

  69. Y. Zhang, S. Xiao, L. Liu, D. Sun, Analysis and estimation of the underwater acoustic millimeter-wave communication channel, pp. 1–5 (2016). Doi:https://doi.org/10.1109/COA.2016.7535740.

  70. M. S. Leeson, M. D. Higgins, Optical wireless and millimeter waves for 5G access networks, (2019).

  71. Y. Niu, Y. Li, D. Jin, L. Su, A. Vasilakos, A survey of millimeter wave (mmwave) communications for 5g: Opportunities and challenges, Wireless Netw. vol. 21 (2015). doi:https://doi.org/10.1007/s11276-015-0942-z.

  72. G. Su, J. Jin, Y. Gu, J. Wang, Performance analysis of norm constraint least mean square algorithm. IEEE Trans. Signal Process. TSP 60 (2012). Doi:https://doi.org/10.1109/TSP.2012.2184537.

  73. M. Xu, L. Liu, Sender-receiver role-based energy-aware scheduling for internet of underwater things. IEEE Trans. Emerg. Top. Comput. pp. 1–1 (2016). Doi:https://doi.org/10.1109/TETC.2016.2632749.

  74. T.S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, G.C. Trichopoulos, Wireless communications and applications above 100 ghz: opportunities and challenges for 6g and beyond. IEEE Access 7, 78729–78757 (2019)

    Article  Google Scholar 

  75. Y. Ping, Y. Xiao, M. Xiao, S. Li, 6g wireless communications: vision and potential techniques. IEEE Network 33, 70–75 (2019). https://doi.org/10.1109/MNET.2019.1800418

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Menaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menaka, D., Gauni, S., Manimegalai, C.T. et al. Vision of IoUT: advances and future trends in optical wireless communication. J Opt 50, 439–452 (2021). https://doi.org/10.1007/s12596-021-00722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00722-x

Keywords

Navigation