Skip to main content
Log in

Optical limiting and reverse-saturable absorption in glycerol

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The input–output power response of the glycerol solution with different glycerin concentrations is studied. It is found that there is an optical power limiting activity for glycerol. The transmission of the optical power is found to decrease with increasing the concentration. The decrease in optical power follows the well-known Beer–Lambert law at lower powers. However, at higher powers we observe an optical limiting property with saturated output powers. The saturated output power of the solution for various concentrations is estimated and is found to decrease with an increase in the concentration of the solution. The limiting mechanism is found to be reverse-saturable absorption and is discussed on the basis of the five level energy diagram of the molecular system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Ji, A.K. Kukaswadia, Z.C. Feng, S.H. Tang, Self-defocusing of nanosecond laser pulse in ZnTe. J. Appl. Phys. 75, 3340 (1994)

    Article  ADS  Google Scholar 

  2. I.M. Belousova, V.A. Grior, O.B. Danelov, A.G. Kalintsev, A.V. Krisko, N.G. Mironova, M.S. Yurev, Role of light induced scattering in the optical limitation of laser radiation on the basis of fullerence containing media. Opt. Spectrosc. 90, 292 (2001)

    Article  ADS  Google Scholar 

  3. G.S. Maciel, N. Rauov, Enhanced optical limiting performance of a nonlinear absorber in a solution containing scattering nano particles. Opt. Lett. 27, 740 (2002)

    Article  ADS  Google Scholar 

  4. M.I. Miah, Cu-doping effects in CdI2 layered nanostructures: the role of photo induced electron phonon anharmonic interaction. J. Appl. Phys. 104, 064313 (2008)

    Article  ADS  Google Scholar 

  5. M.I. Miah, Induction strategies of the noncentrosymmetricity in centrosymmetric nonlinear optical nanocrystal processes. Eur. Phys. J. B 92, 1–5 (2019)

    Article  Google Scholar 

  6. M.I. Miah, Nonlinear optical activity in Bridgman growth layered compounds. Mater. Chem. Phys. 119, 402 (2010)

    Article  Google Scholar 

  7. C.S. Hege, O. Muller, L. Merlat, Laser protection with optical limiting by combination of polymers with dyes. J. Appl. Polym. Sci. 136, 47150 (2019)

    Article  Google Scholar 

  8. O. Muller, V. Pichot, L. Merlat, D. Spitzer, Optical limiting properties of surface functionalized nanodiamonds probed by the Z-scan method. Scien. Rep. 9, 519 (2019)

    Article  ADS  Google Scholar 

  9. C.R. Giuliano, L.R. Hess, Nonlinear absorption of light: optical saturation of electronic transition in organic molecules with high intensity laser radiation. IEEE J. Quantum Electron. 3, 358–367 (1967)

    Article  ADS  Google Scholar 

  10. G.L. Wood, W.W. Clark III., M. Miller, M.J. Sulamo, Optical limiter using a lead phthalocyanine. Appl. Phys. Lett. 63, 1880 (1993)

    Article  Google Scholar 

  11. R. Vijaya, V.Y.G.S. Murti, T.A. Vijaraj, G. Sundarajan, Optical limiting action in poly (para-methoxy acetylene). Curr. Sci. 72, 502 (1997)

    Google Scholar 

  12. D.I. Kovsh, S. Yang, D.J. Hagar, E.E.V. Stryland, Nonlinear optical beam propagation for optical limiting. J. Appl. Opt. 38, 5168 (1999)

    Article  ADS  Google Scholar 

  13. B. Sahraoui, I.V. Kityk, P. Heedhomme, A. Gorgues, J. Bielieninik, Optical limiting process in C60-2-thioxy-1,3-dithiole cycloadduct. Opt. Mat. 13, 349 (1999)

    Article  Google Scholar 

  14. P. Yang, J. Xu, R.W. Schwartz, D.L. Carrol, Optical liming in SrBi2Ta2O9 and PbZrxTi1−xO3 ferroelectric thin films. Appl. Phys. Lett. 80, 3394 (2002)

    Article  ADS  Google Scholar 

  15. M.I. Miah, Stimulated photoluminescence and optical limiting in CdI2. Opt. Mater. 20, 279 (2002)

    Article  ADS  Google Scholar 

  16. J. Wasylak, K. Ozga, I.V. Kityk, IR optical limiting in Europium and Thulium doped oxide glasses. Infrared Phys. Technol. 45, 253 (2004)

    Article  ADS  Google Scholar 

  17. E. Fazio, F. Neri, S. Patare, Optical limiting effects in nonlinear carbon chains. J. Carbon 49, 303 (2011)

    Article  Google Scholar 

  18. P.C. Haripadmaa, M.K. Kavitha, H. John, Optical power limiting studies of ZnO nano tops system and its polymers nano composite films. J. Appl. Phys. 101, 071103 (2012)

    Google Scholar 

  19. M.I. Miah, Optical sensors protector using wide band gap semiconductors. Internation. J. Light Electron Opt. 123, 1582 (2011)

    Google Scholar 

  20. U. Acharjee, M.I. Miah, M.N. Uddin, Y. Hoque, Optical power limiting and transmitting properties of potassium aluminum sulfate: crystal- size dependence. J. Opt. 47, 251 (2018)

    Article  Google Scholar 

  21. M.P. Joshi, S.R. Mishra, K.C. Rustagi, Optical limiting properties of silver nanoprisms. Appl. Phys. Lett. 62, 1763 (1993)

    Article  ADS  Google Scholar 

  22. K.P.J. Reddy, Applications of reverse saturable absorbers in laser science. Curr. Sci. 61, 520 (1991)

    Google Scholar 

  23. R.L. Sutherland, Hand Book of Nonlinear Optics (Marcel Dekker, New York, 1996).

    Google Scholar 

  24. L. Tutt, A. Kost, Optical limiting performances of C60 and C70 solutions. Nature 356, 225 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

For the present research work, a grant from the University Grants Commission of Bangladesh is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Idrish Miah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miah, M.I. Optical limiting and reverse-saturable absorption in glycerol. J Opt 50, 459–465 (2021). https://doi.org/10.1007/s12596-021-00705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-021-00705-y

Keywords

Navigation