Skip to main content

Advertisement

Log in

Optical soliton structure of the sub-10-fs-pulse propagation model

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This research paper illustrates a novel structure of the optical soliton wave solutions of nonlinear Schrödinger (NLS) equation with the higher-order (a model for the sub-10-fs-pulse propagation) by using the modified Khater method. Moreover, this research is studying the stability properties of obtained solutions to show their ability to apply in the model’s applications. The NLS equation with the higher-order describes the quantum aspects of a quantum-mechanical system. Some sketches are plotted to show more physical properties of the real, imaginary, and absolute obtained solutions. All obtained solutions are verified of its accuracy by putting them back into the original equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.X. Ma, Lump and interaction solutions to linear PDEs in 2+ 1 dimensions via symbolic computation. Modern Phys. Lett. B 33(36), 1950457 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. S.J. Chen, Y.H. Yin, W.X. Ma, X. Lü, Abundant exact solutions and interaction phenomena of the (2+ 1)-dimensional YTSF equation. Anal. Math. Phys. 9(4), 2329–2344 (2019)

    Article  MathSciNet  Google Scholar 

  3. W.X. Ma, L. Zhang, Lump solutions with higher-order rational dispersion relations. Pramana 94(1), 1–7 (2020)

    Article  Google Scholar 

  4. W.X. Ma, Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations. J. Geom. Phys. 157, 103845 (2020)

    Article  MathSciNet  Google Scholar 

  5. E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Article  ADS  Google Scholar 

  6. M.D. Feit, J.A. Fleck, A. Steiger, Solution of the Schrödinger equation by a spectral method. J. Comput. Phys. 47(3), 412–423 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  8. J.A. Pava, Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg-de Vries equations. J. Differ. Equ. 235(1), 1–30 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. M.L. Wang, Y. Zhou, The periodic wave solutions for the Klein–Gordon–Schrödinger equations. Phys. Lett. A 318(1–2), 84–92 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. L. Gagnon, Exact traveling-wave solutions for optical models based on the nonlinear cubic-quintic Schrödinger equation. J. Opt. Soc. Am. A 6(9), 1477–1483 (1989)

    Article  ADS  Google Scholar 

  11. A.R. Shehata, The traveling wave solutions of the perturbed nonlinear Schrödinger equation and the cubic-quintic Ginzburg Landau equation using the modied (G’/G)-expansion method. Appl. Math. Comput. 217(1), 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Z. Yan, Generalized method and its application in the higher-order nonlinear Schrödinger equation in nonlinear optical fibbres. Chaos, Solitons Fract. 16(5), 759–766 (2003)

    Article  ADS  Google Scholar 

  13. H.W. Schürmann, Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation. Phys. Rev. E 54(4), 4312–4320 (1996)

    Article  ADS  Google Scholar 

  14. K.L. Henderson, D.H. Peregrine, J.W. Dold, Unsteady water wave modulations: Fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29(4), 341–361 (1999)

    Article  MathSciNet  Google Scholar 

  15. W.-X. Ma, M. Chen, Direct search for exact solutions to the nonlinear Schrödinger equation. Appl. Math. Comput. 215(8), 2835–2842 (2009)

    MathSciNet  MATH  Google Scholar 

  16. M. Delfour, M. Fortin, G. Payr, Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  Google Scholar 

  18. M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  19. S.C. Martijn, J.E. Sipe, Coupled modes and the nonlinear Schrödinger equation. Phys. Rev. A 42(1), 550–555 (1990)

    Article  ADS  Google Scholar 

  20. Z.-Y. Zhang, Z.-H. Liu, X.-J. Miao, Y.-Z. Chen, Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Phys. Lett. A 375(10), 1275–1280 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. De Angelis, Self-trapped propagation in the nonlinear cubic-quintic Schrödinger equation: a variational approach. IEEE J. Q. Electron. 30(3), 818–821 (1994)

    Article  ADS  Google Scholar 

  22. A.V. Porubov, D.F. Parker, Some general periodic solutions to coupled nonlinear Schrödinger equations. Wave Motion 29(2), 97–109 (1999)

    Article  MathSciNet  Google Scholar 

  23. M.L. Wang, X. Li, J. Zhang, Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation. Phys. Lett. A 363(1–2), 96–101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1983)

    Article  ADS  Google Scholar 

  25. T. Kapitula, B. Sandstede, Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D: Nonlinear Phenom. 124(1–3), 58–103 (1998)

    Article  ADS  Google Scholar 

  26. C.-Q. Dai, Y.-Y. Wang, Exact travelling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method. Phys. Scrip. 78(1), 015013 (2008). https://doi.org/10.1088/0031-8949/78/01/015013

    Article  ADS  MATH  Google Scholar 

  27. X.-J. Miao, Z.-Y. Zhang, The modified (G’/G)-expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 16(11), 4259–4267 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Belić, N. Petrović, W.-P. Zhong, R.-H. Xie, G. Chen, Analytical light bullet solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett. 101(12), 123904 (2008). https://doi.org/10.1103/PhysRevLett.101.123904

    Article  ADS  Google Scholar 

  29. R. Haydock, The recursive solution of the Schrödinger equation. Solid State Phys. (Academic Press) 35, 215–394 (1980)

    Article  Google Scholar 

  30. M.M. Khater, R.A. Attia, C. Park, D. Lu, On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves. Results Phys. 18, 103317 (2020)

    Article  Google Scholar 

  31. M.M. Khater, R.A. Attia, A.H. Abdel-Aty, W. Alharbi, D. Lu, Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms. Chaos, Solitons Fract. 136, 109824 (2020)

    Article  MathSciNet  Google Scholar 

  32. A.H. Abdel-Aty, M.M. Khater, R.A. Attia, M. Abdel-Aty, H. Eleuch, On the new explicit solutions of the fractional nonlinear space-time nuclear model. Fractals 28(8), 2040035 (2020)

    Article  ADS  Google Scholar 

  33. H. Qin, M. Khater, R.A. Attia, Inelastic interaction and blowup new solutions of nonlinear and dispersive long gravity waves. J. Funct. Spaces 2020, 5362989 (2020)

    MathSciNet  MATH  Google Scholar 

  34. C. Park, M.M. Khater, A.H. Abdel-Aty, R.A. Attia, H. Rezazadeh, A.M. Zidan, A.B. Mohamed, Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic. Alex. Eng. J. 13, 103453 (2020)

    Google Scholar 

  35. A.H. Abdel-Aty, M.M. Khater, H. Dutta, J. Bouslimi, M. Omri, Computational solutions of the HIV-1 infection of CD4+ T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy. Chaos, Solitons Fract. 139, 110092 (2020)

    Article  MathSciNet  Google Scholar 

  36. C. Yue, M.M. Khater, R.A. Attia, D. Lu, The plethora of explicit solutions of the fractional KS equation through liquid-gas bubbles mix under the thermodynamic conditions via Atangana-Baleanu derivative operator. Adv. Differ. Equ. 2020(1), 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  37. M.M. Khater, D. Baleanu, On abundant new solutions of two fractional complex models. Adv. Differ. Equ. 2020(1), 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  38. A.H. Abdel-Aty, M.M. Khater, D. Baleanu, E.M. Khalil, J. Bouslimi, M. Omri, Abundant distinct types of solutions for the nervous biological fractional FitzHughâĂŞNagumo equation via three different sorts of schemes. Adv. Differ. Equ. 2020(1), 1–17 (2020)

    Article  MathSciNet  Google Scholar 

  39. Wen-Xiu Ma, Benno Fuchssteiner, Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non-Linear Mech. 31(3), 329–338 (1996)

    Article  MathSciNet  Google Scholar 

  40. V.I. Arnol’d, The stability of the equilibrium position of a Hamiltonian system of ordinary differential equations in the general elliptic case, Russian Academy of Sciences. Dokl. Akad. Nauk 137(2), 255–257 (1961)

    Google Scholar 

  41. A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Differ. Equ. 77(1), 167–198 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  42. B.S. Bardin, E.A. Chekina, On the constructive algorithm for stability analysis of an equilibrium point of a periodic hamiltonian system with Two Degrees of Freedom in the Case of Combinational Resonance. Regul. Chaotic Dyn. 24(2), 127–144 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  43. A. Choudhuri, K. Porsezian, Higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms: a model for sub-10-fs-pulse propagation. Phys. Rev. A 88(3), 033808 (2013). https://doi.org/10.1103/PhysRevA.88.033808

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Bekir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, M.M.A., Attia, R.A.M., Bekir, A. et al. Optical soliton structure of the sub-10-fs-pulse propagation model. J Opt 50, 109–119 (2021). https://doi.org/10.1007/s12596-020-00667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-020-00667-7

Keywords

Navigation